Информация предназначена только для профессионалов в области здравоохранения.
Вы можете зайти как пользователь социальных сетей
Для цитированияСкрыть список T.H.Marwick, T.C.Gillebert, G.Aurigemma, J.Chirinos, G.Derumeaux, M.Galderisi, J.Gottdiener, B.Haluska, E.Ofili, P.Segers, R.Senior, R.J.Tapp, J.L.Zamorano Под редакцией доктора медицинских наук, профессора А.Б.Хадзеговой, члена-корреспондента РАН С.Т.Мацкеплишвили Перевод с английского: кандидат медицинских наук П.В.Крикунова. Рекомендации по применению эхокардиографии при артериальной гипертензии у взрослых: отчет Европейской ассоциации по сердечно-сосудистой визуализации (EACVI) и Американского эхокардиографического общества (ASE)*. Системные гипертензии. 2017; 02: 6-28
Список исп. литературыСкрыть список Литература/References 1. Jennings G. Obesity and left ventricular hypertrophy: does my heart look big on this? J Hypertens 2010; 28: 2190–3. 2. Brumback LC, Kronmal R, Heckbert SR et al. Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification. Int J Cardiovasc Imaging 2010; 26: 459–68. 3. Chirinos JA, Segers P, De Buyzere ML et al. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension 2010; 56: 91–8. 4. Lauer MS, Anderson KM, Larson MG, Levy D. A new method for indexing left ventricular mass for differences in body size. Am J Cardiol 1994; 74: 487–91. 5. Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol 2011; 58: 1733–40. 6. Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level-risk factors, screening, and outcomes. Nat Rev Cardiol 2011; 8: 673–85. 7. Natori S, Lai S, Finn JP et al. Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol 2006; 186: S357–65. 8. Salton CJ, Chuang ML, O’Donnell CJ et al. Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study offspring cohort. J Am Coll Cardiol 2002; 39: 1055–60. 9. Bella JN, Devereux RB, Roman MJ et al. Relations of left ventricular mass to fat-free and adipose body mass: the strong heart study. The Strong Heart Study Investigators. Circulation 1998; 98: 2538–44. 10. Mohammed SF, Borlaug BA, Roger VL et al. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ Heart Fail 2012; 5: 710–9. 11. De Simone G, Devereux RB. Method errors or unexplained biological information? Hypertension 2010; 56: e177–8. 12. Cheng S, Fernandes VR, Bluemke DA et al. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 2009; 2: 191–8. 13. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007; 34: 255–62. 14. Turkbey EB, McClelland RL, Kronmal RA et al. The impact of obesity on the left ventricle: the multi-ethnic study of atherosclerosis (MESA). JACC Cardiovasc Imaging 2010; 3: 266–74. 15. Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA 1991; 266: 231–6. 16. Cheng S, Xanthakis V, Sullivan LM et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 2010; 122: 570–8. 17. Bella JN, Devereux RB, Roman MJ et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol 2001; 87: 1260–5. 18. Palmieri V, Bella JN, Arnett DK et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation 2001; 103: 102–7. 19. Ernande L, Bergerot C, Rietzschel ER et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 2011; 24: 1268–75, e1261. 20. Bella JN, MacCluer JW, Roman MJ et al. Heritability of left ventricular dimensions and mass in American Indians: the Strong Heart Study. J Hypertens 2004; 22: 281–6. 21. Lam CS, Liu X, Yang Q et al. Familial aggregation of left ventricular geometry and association with parental heart failure: the Framingham Heart Study. Circ Cardiovasc Genet 2010; 3: 492–8. 22. Poppe KK, Bachmann ME, Triggs CM et al. Geographic variation in left ventricular mass and mass index: a systematic review. J Hum Hypertens 2012; 26: 420–9. 23. Bonow RO, Mann DL, Zipes DP, Libby P. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set. Boston: Elsevier Health Sciences, 2011. 24. Leite-Moreira AF. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 2006; 92: 712–8. 25. Meerson FZ. Compensatory hyperfunction of the heart and cardiac insufficiency. Circ Res 1962; 10: 250–8. 26. Gillebert TC, Lew WY. Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol 1991; 261: H805–13. 27. Chirinos JA, Segers P, Rietzschel ER et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 2013; 61: 296–303. 28. Kobayashi S, Yano M, Kohno M et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation 1996; 94: 3362–8. 29. Lang RM, Badano L, Afilalo J, Chamber Quantification Writing Group, American Society of Echocardiography’s Guidelines, Standards Committee, European Association of Echocardiography. Recommendations for cardiac chamber quantification by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39. 30. Tsang TS, Abhayaratna WP, Barnes ME et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol 2006; 47: 1018–23. 31. Benjamin EJ, D’Agostino RB, Belanger AJ et al. Left atrial size and the risk of stroke and death. the Framingham Heart study. Circulation 1995; 92: 835–41. 32. Cuspidi C, Meani S, Fusi V et al. Prevalence and correlates of left atrial enlargement in essential hypertension: role of ventricular geometry and the metabolic syndrome: the evaluation of target organ damage in hypertension study. J Hypertens 2005; 23: 875–82. 33. Rackley CE, Dodge HT, Coble YD Jr, Hay RE. A method for determining left ventricular mass in man. Circulation 1964; 29: 666–71. 34. Deague JA, Wilson CM, Grigg LE, Harrap SB. Discrepancies between echocardiographic measurements of left ventricular mass in a healthy adult population. Clin Sci (Lond) 1999; 97: 377–83. 35. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977; 55: 613–8. 36. Reichek N, Helak J, Plappert T et al. Anatomic validation of left ventricular mass estimates from clinical two-dimensional echocardiography: initial results. Circulation 1983; 67: 348–52. 37. Henry WL, Gardin JM, Ware JH. Echocardiographic measurements in normal subjects from infancy to old age. Circulation 1980; 62: 1054–61. 38. Devereux RB, Lutas EM, Casale PN et al. Standardization of m-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 1984; 4: 1222–30. 39. Hammond IW, Devereux RB, Alderman MH et al. The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension. J Am Coll Cardiol 1986; 7: 639–50. 40. Byrd BF, Wahr D, Wang YS et al. Left ventricular mass and volume/mass ratio determined by two-dimensional echocardiography in normal adults. J Am Coll Cardiol 1985; 6: 1021–5. 41. Levy D, Savage DD, Garrison RJ et al. Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart study. Am J Cardiol 1987; 59: 956–60. 42. Koren MJ, Devereux RB, Casale PN et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–52. 43. De Simone G, Daniels SR, Devereux RB et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 1992; 20: 1251–60. 44. Kuch B, Hense HW, Gneiting B et al. Body composition and prevalence of left ventricular hypertrophy. Circulation 2000; 102: 405–10. 45. De Ridder S, Suttorp MJ, Ernst SM et al. Percutaneous transcatheter closure of atrial septal defects: initial single-centre experience and follow-up results. Initial experience with three-dimensional echocardiography. Acta Cardiol 2005; 60: 171–8. 46. Lang RM, Bierig M, Devereux RB et al. Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7: 79–108. 47. Helak JW, Reichek N. Quantitation of human left ventricular mass and volume by two-dimensional echocardiography: in vitro anatomic validation. Circulation 1981; 63: 1398–407. 48. Fukuda S, Watanabe H, Daimon M et al. Normal values of real-time 3-dimensional echocardiographic parameters in a healthy Japanese population: the JAMP-3D study. Circ J 2012; 76: 1177–81. 49. Muraru D, Badano LP, Peluso D et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr 2013; 26: 618–28. 50. Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 2004; 44: 878–86. 51. Takeuchi M, Nishikage T, Mor-Avi V et al. Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and M-mode measurements. J Am Soc Echocardiogr 2008; 21: 1001–5. 52. Van den Bosch AE, Robbers-Visser D, Krenning BJ et al. Comparison of real-time three-dimensional echocardiography to magnetic resonance imaging for assessment of left ventricular mass. Am J Cardiol 2006; 97: 113–7. 53. Shimada YJ, Shiota T. Meta-analysis of accuracy of left ventricular mass measurement by three-dimensional echocardiography. Am J Cardiol 2012; 110: 445–52. 54. Krishnamoorthy A, Brown T, Ayers CR et al. Progression from normal to reduced left ventricular ejection fraction in patients with concentric left ventricular hypertrophy after long-term follow-up. Am J Cardiol 2011; 108: 997–1001. 55. Masiha S, Sundstrom J, Lind L. Left ventricular geometric patterns and adaptations to hemodynamics are similar in elderly men and women. BMC Cardiovasc Disord 2011; 11: 25. 56. Tsioufis C, Taxiarchou E, Syrseloudis D et al. Left ventricular mass but not geometry determines left atrial size in the early stages of hypertension. J Hum Hypertens 2009; 23: 674–9. 57. Mizuguchi Y, Oishi Y, Miyoshi H et al. Concentric left ventricular hypertrophy brings deterioration of systolic longitudinal, circumferential, and radial myocardial deformation in hypertensive patients with preserved left ventricular pump function. J Cardiol 2010; 55: 23–33. 58. Masugata H, Senda S, Inukai M et al. Differences in left ventricular diastolic dysfunction between eccentric and concentric left ventricular hypertrophy in hypertensive patients with preserved systolic function. J Int Med Res 2011; 39: 772–9. 59. Mannaerts HF, van der Heide JA, Kamp O et al. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J 2004; 25: 680–7. 60. Cameli M, Lisi M, Righini FM et al. Left ventricular remodeling and torsion dynamics in hypertensive patients. Int J Cardiovasc Imaging 2013; 29: 79–86. 61. Khouri MG, Peshock RM, Ayers CR et al. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas Heart Study. Circ Cardiovasc Imaging 2010; 3: 164–71. 62. Dianzumba SB, DiPette D, Joyner CR et al. Left ventricular function in mild hypertension after adrenergic blockade. Hypertension 1988; 11: 198–102. 63. Diez J. Towards a new paradigm about hypertensive heart disease. Med Clin North Am 2009; 93: 637–45. 64. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849–65. 65. Diez J, Gonzalez A, Lopez B, Querejeta R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med 2005; 2: 209–16. 66. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014; 100: 1673–80. 67. Weidemann F, Niemann M, Ertl G, Stork S. The different faces of echocardiographic left ventricular hypertrophy: clues to the etiology. J Am Soc Echocardiogr 2010; 23: 793–801. 68. Di Bello V, Pedrinelli R, Talini E et al. Ultrasonic myocardial tissue characterization: a methodological review. Ital Heart J 2001; 2: 333–43. 69. Lythall DA, Bishop J, Greenbaum RA et al. Relationship between myocardial collagen and echo amplitude in non-fibrotic hearts. Eur Heart J 1993; 14: 344–50. 70. Mizuno R, Fujimoto S, Saito Y, Nakamura S. Non-invasive quantitation of myocardial fibrosis using combined tissue harmonic imaging and integrated backscatter analysis in dilated cardiomyopathy. Cardiology 2007; 108: 11–7. 71. Di Bello V, Pedrinelli R, Bianchi M et al. Ultrasonic myocardial texture in hypertensive mild-to-moderate left ventricular hypertrophy: a videodensitometric study. Am J Hypertens 1998; 11: 155–64. 72. Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445–53. 73. Rudolph A, Abdel-Aty H, Bohl S et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 2009; 53: 284–91. 74. Moreo A, Ambrosio G, De Chiara B et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2009; 2: 437–43. 75. Iles L, Pfluger H, Phrommintikul A et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 2008; 52: 1574–80. 76. Van den Borne SW, Isobe S, Verjans JW et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 2008; 52: 2017–28. 77. Gonzalez A, Fortuno MA, Querejeta R et al. Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 2003; 59: 549–62. 78. Janardhanan R, Desai AS, Solomon SD. Therapeutic approaches to diastolic dysfunction. Curr Hypertens Rep 2009; 11: 283–91. 79. Marchais SJ, Guerin AP, Pannier B et al. Arterial compliance and blood pressure. Drugs 1993; 46 (Suppl. 2): 82–7. 80. Chirinos JA, Segers P, Gillebert TC et al. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension 2012; 60: 64–70. 81. Mitchell GF, Guo CY, Benjamin EJ et al. Crosssectional correlates of increased aortic stiffness in the community: the Framingham Heart study. Circulation 2007; 115: 2628–36. 82. Weber T. Wave reflection in acute ischemic stroke. Am J Hypertens 2010; 23: 704. 83. Chirinos JA, Kips JG, Jacobs DR Jr et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (multiethnic study of atherosclerosis). J Am Coll Cardiol 2012; 60: 2170–7. 84. De Tombe PP, Jones S, Burkhoff D et al. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol 1993; 264: H1817–24. 85. Claessens TE, Rietzschel ER, De Buyzere ML et al. Noninvasive assessment of left ventricular and myocardial contractility in middle-aged men and women: disparate evolution above the age of 50? Am J Physiol Heart Circ Physiol 2007; 292: H856–65. 86. Redfield MM, Jacobsen SJ, Borlaug BA et al. Age- and gender related ventricular-vascular stiffening: a community-based study. Circulation 2005; 112: 2254–62. 87. Chen CH, Fetics B, Nevo E et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 2001; 38: 2028–34. 88. Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. Anew method with the potential for noninvasive application. Circulation 1996; 94: 2497–506. 89. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension 2010; 56: 555–62. 90. Evangelista A, Flachskampf FA, Erbel R et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr 2010; 11: 645–58. 91. Schiller NB, Shah PM, Crawford M et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 1989; 2: 358–67. 92. Otterstad JE, Froeland G, St John Sutton M, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 1997; 18: 507–13. 93. Lafitte S, Lasserre R, Couffinhal T et al. Superiority of second harmonic imaging for echocardiographic measurement of LEF ventricular volumes. Comparison with angiocardiography. Arch Mal Coeur Vaiss 1999; 92: 867–74. 94. Grothues F, Smith GC, Moon JC et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002; 90: 29–34. 95. Quinones MA, Gaasch WH, Cole JS, Alexander JK. Echocardiographic determination of left ventricular stress-velocity relations. Circulation 1975; 51: 689–700. 96. Jenkins C, Moir S, Chan J et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 2009; 30: 98–106. 97. Dorosz JL, Lezotte DC, Weitzenkamp DA et al. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 2012; 59: 1799–808. 98. Hung J, Lang R, Flachskampf F et al. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 2007; 20: 213–33. 99. Monaghan MJ. Role of real time 3D echocardiography in evaluating the left ventricle. Heart 2006; 92: 131–6. 100.Lang RM, Badano LP, Tsang W et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 2012; 25: 3–46. 101.Chahal NS, Lim TK, Jain P et al. Population-based reference values for 3D echocardiographic LV volumes and ejection fraction. JACC Cardiovasc Imaging 2012; 5: 1191–7. 102.Chukwu EO, Barasch E, Mihalatos DG et al. Relative importance of errors in left ventricular quantitation by two-dimensional echocardiography: insights from three-dimensional echocardiography and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 990–7. 103.Thavendiranathan P, Liu S, Verhaert D et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure lv volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging 2012; 5: 239–51. 104.Shimizu G, Hirota Y, Kita Y et al. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 1991; 83: 1676–84. 105.Palmon LC, Reichek N, Yeon SB et al. Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 1994; 89: 122–31. 106.Rademakers FE, Rogers WJ, Guier WH et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 1994; 89: 1174–82. 107.Levy D, Garrison RJ, Savage DD et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart study. N Engl J Med 1990; 322: 1561–6. 108.De Simone G, Devereux RB, Koren MJ et al. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 1996; 93: 259–65. 109.De Simone G, Devereux RB, Roman MJ et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol 1994; 23: 1444–51. 110.Greenbaum RA, Ho SY, Gibson DG et al. Left ventricular fibre architecture in man. Br Heart J 1981; 45: 248–63. 111.Pearlman ES, Weber KT, Janicki JS et al. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 1982; 46: 158–64. 112.Freeman GL, LeWinter MM, Engler RL, Covell JW. Relationship between myocardial fiber direction and segment shortening in the midwall of the canine left ventricle. Circ Res 1985; 56: 31–9. 113.Aurigemma GP, Gaasch WH, McLaughlin M et al. Reduced left ventricular systolic pump performance and depressed myocardial contractile function in patients 65 years of age with normal ejection fraction and a high relative wall thickness. Am J Cardiol 1995; 76: 702–5. 114.De Simone G, Devereux RB. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. Eur J Echocardiogr 2002; 3: 192–8. 115.Shimizu G, Conrad CH, Gaasch WH. Phase-plane analysis of left ventricular chamber filling and midwall fiber lengthening in patients with left ventricular hypertrophy. Circulation 1987; 75: 134–9. 116.Ballo P, Mondillo S, Guerrini F et al. Midwall mechanics in physiologic and hypertensive concentric hypertrophy. J Am Soc Echocardiogr 2004; 17: 418–27. 117.Calabro R, Pisacane C, Pacileo G, Russo MG. Left ventricular midwall mechanics in healthy children and adolescents. J Am Soc Echocardiogr 1999; 12: 932–40. 118.Slotwiner DJ, Devereux RB, Schwartz JE et al. Relation of age to left ventricular function in clinically normal adults. Am J Cardiol 1998; 82: 621–6. 119.Park K, Chang SA, Kim HK et al. Normal ranges and physiological changes of midwall fractional shortening in healthy Korean population. Korean Circ J 2010; 40: 587–92. 120.Crepaz R, Cemin R, Pedron C et al. Age-related variations of left ventricular endocardial and midwall function in healthy infants, children, and adolescents. Ital Heart J 2005; 6: 634–9. 121.Zabalgoitia M, Rahman SN, Haley WE et al. Effect of regression of left ventricular hypertrophy from systemic hypertension on systolic function assessed by midwall shortening (hot echocardiographic study). Am J Cardiol 2001; 88: 521–5. 122.Wachtell K, Gerdts E, Palmieri V et al. In-treatment midwall and endocardial fractional shortening predict cardiovascular outcome in hypertensive patients with preserved baseline systolic ventricular function: the losartan intervention for endpoint reduction study. J Hypertens 2010; 28: 1541–6. 123.Novelli GP, Vasapollo B, Gagliardi G et al. Left ventricular midwall mechanics at 24 weeks’ gestation in high-risk normotensive pregnant women: relationship to placenta-related complications of pregnancy. Ultrasound Obstet Gynecol 2012; 39: 430–7. 124.Jacobs LD, Salgo IS, Goonewardena S et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 2006; 27: 460–8. 125.Jung HO, Sheehan FH, Bolson EL et al. Evaluation of midwall systolic function in left ventricular hypertrophy: a comparison of 3-dimensional versus 2-dimensional echocardiographic indices. J Am Soc Echocardiogr 2006; 19: 802–10. 126.Yoshikawa H, Suzuki M, Hashimoto G et al. Midwall ejection fraction for assessing systolic performance of the hypertrophic left ventricle. Cardiovasc Ultrasound 2012; 10: 45. 127.Galderisi M, Lomoriello VS, Santoro A et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr 2010; 23: 1190–8. 128.Gulati VK, Katz WE, Follansbee WP, Gorcsan J. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol 1996; 77: 979–84. 129.Shan K, Bick RJ, Poindexter BJ et al. Relation of tissue Doppler derived myocardial velocities to myocardial structure and beta-adrenergic receptor density in humans. J Am Coll Cardiol 2000; 36: 891–6. 130.Ruan Q, Nagueh SF. Usefulness of isovolumic and systolic ejection signals by tissue Doppler for the assessment of left ventricular systolic function in ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2006; 97: 872–5. 131.Derumeaux G, Ovize M, Loufoua J et al. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation 1998; 97: 1970–7. 132.Shimizu Y, Uematsu M, Shimizu H et al. Peak negative myocardial velocity gradient in early diastole as a noninvasive indicator of left ventricular diastolic function: comparison with transmitral flow velocity indices. J Am Coll Cardiol 1998; 32: 1418–25. 133.Hu K, Liu D, Niemann M et al. Methods for assessment of left ventricular systolic function in technically difficult patients with poor imaging quality. J Am Soc Echocardiogr 2013; 26: 105–13. 134.Mor-Avi V, Lang RM, Badano LP et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 2011; 12: 167–205. 135.Nikitin NP, Loh PH, Silva R et al. Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 2006; 92: 775–9. 136.Vinereanu D, Florescu N, Sculthorpe N et al. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol 2001; 88: 53–8. 137.CardimN, Longo S, Ferreira T et al. Tissue Doppler imaging assessment of long axis left ventricular function in hypertensive patients with concentric left ventricular hypertrophy: differential diagnosis with hypertrophic cardiomyopathy. Rev Port Cardiol 2002; 21: 709–40. 138.De Sutter J, de Backer J, van de Veire N et al. Effects of age, gender, and left ventricular mass on septal mitral annulus velocity (e′) and the ratio of transmitral early peak velocity to e′ (e/e′). Am J Cardiol 2005; 95: 1020–3. 139.Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 2007; 116: 2597–609. 140.Geyer H, Caracciolo G, Abe H et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010; 23: 351–69 quiz 453–5. 141.Urheim S, Edvardsen T, Torp H et al. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158–64. 142.Edvardsen T, Gerber BL, Garot J et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 2002; 106: 50–6. 143.Belohlavek M, Bartleson VB, Zobitz ME. Real-time strain rate imaging: validation of peak compression and expansion rates by a tissue-mimicking phantom. Echocardiography 2001; 18: 565–71. 144.Kang SJ, Lim HS, Choi BJ et al. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J Am Soc Echocardiogr 2008; 21: 907–11. 145.Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 2013; 26: 185–91. 146.Phelan D, Collier P, Thavendiranathan P et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012; 98: 1442–8. 147.Weidemann F, Breunig F, Beer M et al. The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J 2005; 26: 1221–7. 148 Owan TE, Hodge DO, Herges RM et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251–9. 149.Tapp RJ, Sharp A, Stanton AV et al. Differential effects of antihypertensive treatment on left ventricular diastolic function: an ASCOT (Anglo-Scandinavian cardiac outcomes trial) substudy. J Am Coll Cardiol 2010; 55: 1875–81. 150.Lutas EM, Devereux RB, Reis G et al. Increased cardiac performance in mild essential hypertension. Left ventricular mechanics. Hypertension 1985; 7: 979–88. 151.Cicala S, de Simone G, Roman MJ et al. Prevalence and prognostic significance of wall-motion abnormalities in adults without clinically recognized cardiovascular disease: the strong heart study. Circulation 2007; 116: 143–50. 152.Di Bello V, Talini E, Dell’Omo G et al. Early left ventricular mechanics abnormalities in prehypertension: a two-dimensional strain echocardiography study. Am J Hypertens 2010; 23: 405–12. 153.Muiesan ML, Salvetti M, Rizzoni D et al. Persistence of left ventricular hypertrophy is a stronger indicator of cardiovascular events than baseline left ventricular mass or systolic performance: 10 years of follow-up. J Hypertens (Suppl.) 1996; 14: S43–9. 154.De Simone G, Izzo R, Chinali M et al. Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension 2010; 56: 99–104. 155.Appleton CP, Jensen JL, Hatle LK, Oh JK. Doppler evaluation of left and right ventricular diastolic function: a technical guide for obtaining optimal flow velocity recordings. J Am Soc Echocardiogr 1997; 10: 271–92. 156.Nagueh SF, Appleton CP, Gillebert TC et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 2009; 10: 165–93. 157.Klein AL, Burstow DJ, Tajik AJ et al. Effects of age on left ventricular dimensions and filling dynamics in 117 normal persons. Mayo Clin Proc 1994; 69: 212–24. 158.Vanoverschelde JL, Raphael DA, Robert AR, Cosyns JR. Left ventricular filling in dilated cardiomyopathy: relation to functional class and hemodynamics. J Am Coll Cardiol 1990; 15: 1288–95. 159.Wachtell K, Palmieri V, Gerdts E et al. Prognostic significance of left ventricular diastolic dysfunction in patients with left ventricular hypertrophy and systemic hypertension (the LIFE study). Am J Cardiol 2010; 106: 999–1005. 160.Nagueh SF, Middleton KJ, Kopelen HA et al. Doppler tissue imaging: a non-invasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997; 30: 1527–33. 161.Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol 2003; 91: 780–4. 162.Park JH, Marwick TH. Use and limitations of e/e′ to assess left ventricular filling pressure by echocardiography. J Cardiovasc Ultrasound 2011; 19: 169–73. 163.Wang M, Yip G, Yu CM et al. Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J Am Coll Cardiol 2005; 45: 272–7. 164.Wang M, Yip GW, Wang AY et al. Tissue Doppler imaging provides incremental prognostic value in patients with systemic hypertension and left ventricular hypertrophy. J Hypertens 2005; 23: 183–91. 165.Dokainish H, Zoghbi WA, Lakkis NM et al. Incremental predictive power of b-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol 2005; 45: 1223–6. 166.Sharp AS, Tapp RJ, Thom SA et al. Tissue Doppler e/e′ ratio is a powerful predictor of primary cardiac events in a hypertensive population: an ASCOT substudy. Eur Heart J 2010; 31: 747–52. 167.Mancia G, Fagard R, Narkiewicz K et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2013; 34: 2159–219. 168.Verdecchia P, Angeli F, Achilli P et al. Echocardiographic left ventricular hypertrophy in hypertension: marker for future events or mediator of events? Curr Opin Cardiol 2007; 22: 329–34. 169.Gosse P. Left ventricular hypertrophy as a predictor of cardiovascular risk. J Hypertens Suppl 2005; 23: S27–33. 170.Nadour W, Biederman RW. Is left ventricular hypertrophy regression important? Does the tool used to detect it matter? J Clin Hypertens (Greenwich) 2009; 11: 441–7. 171.Cuspidi C, Sala C, Negri F et al. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens 2012; 26: 343–9. 172.St John Sutton M, Pfeffer MA. Prevention of post-infarction left ventricular remodeling by ace-inhibitors. Cardiologia 1994; 39: 27–30. 173.Kramer DG, Trikalinos TA, Kent DM et al. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol 2010; 56: 392–406. 174.Kirkpatrick JN, Vannan MA, Narula J, Lang RM. Echocardiography in heart failure: applications, utility, and new horizons. J Am Coll Cardiol 2007; 50: 381–96. 175.Solomon SD, Janardhanan R, Verma A et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomized trial. Lancet 2007; 369: 2079–87. 176.Wachtell K, Bella JN, Rokkedal J et al. Change in diastolic left ventricular filling after one year of antihypertensive treatment: the Losartan intervention for endpoint reduction in hypertension (LIFE) study. Circulation 2002; 105: 1071–6. 177.Greenland P, Alpert JS, Beller GA et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task force on practice guidelines. Circulation 2010; 122: e584–636. 178.American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation appropriate use criteria task force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol 2011; 57: 1126–66. 179.Chobanian AV, Bakris GL, Black HR et al. The Seventh Report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003; 289: 2560–72. 180.Nunez E, Arnett DK, Benjamin EJ et al. Comparison of the prognostic value of left ventricular hypertrophy in African-American men versus women. Am J Cardiol 2004; 94: 1383–90. 181.Okin PM, Roman MJ, Lee ET et al. Combined echocardiographic left ventricular hypertrophy and electrocardiographic ST depression improve prediction of mortality in American Indians: The strong heart study. Hypertension 2004; 43: 769–74. 182.Rodriguez CJ, Lin F, Sacco RL et al. Prognostic implications of left ventricular mass among Hispanics: the Northern Manhattan study. Hypertension 2006; 48: 87–92. 183.Verdecchia P, Carini G, Circo A et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: The MAVI study. J Am Coll Cardiol 2001; 38: 1829–35. 184.Lapu-Bula R, Ofili E. From hypertension to heart failure: role of nitric oxide-mediated endothelial dysfunction and emerging insights from myocardial contrast echocardiography. Am J Cardiol 2007; 99: 7D–14D. 185.Picano E, Palinkas A, Amyot R. Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 2001; 19: 1177–83. 186.Fragasso G. Detection of coronary disease in patients with hypertension: a resolved issue? J Clin Hypertens (Greenwich) 2000; 2: 210–4. 187.Cortigiani L, Rigo F, Galderisi M et al. Diagnostic and prognostic value of Doppler echocardiographic coronary flow reserve in the left anterior descending artery in hypertensive and normotensive patients [corrected]. Heart 2011; 97: 1758–65. 188.Schmieder RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996; 275: 1507–13. 189.Devereux RB, Palmieri V, Sharpe N et al. Effects of once-daily angiotensin-converting enzyme inhibition and calcium channel blockade-based antihypertensive treatment regimens on left ventricular hypertrophy and diastolic filling in hypertension: the prospective randomized enalapril study evaluating regression of ventricular enlargement (PRESERVE) trial. Circulation 2001; 104: 1248–54. 190.Okin PM, Devereux RB, Nieminen MS et al. Electrocardiographic strain pattern and prediction of cardiovascular morbidity and mortality in hypertensive patients. Hypertension 2004; 44: 48–54. 191.Liebson PR, Grandits GA, Dianzumba S et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the treatment of mild hypertension study (TOMHS). Circulation 1995; 91: 698–706. 192.Gottdiener JS, Reda DJ, Massie BM et al. Effect of single-drug therapy on reduction of left ventricular mass in mild to moderate hypertension: comparison of six antihypertensive agents. The Department of Veterans Affairs Cooperative Study Group on antihypertensive agents. Circulation 1997; 95: 2007–14. 193.Gottdiener JS, Reda DJ, Williams DW et al. Effect of single-drug therapy on reduction of left atrial size in mild to moderate hypertension: comparison of six antihypertensive agents. Circulation 1998; 98: 140–8. 194.National Institute for Health and Care Excellence (NICE). Hypertension: Clinical Management of Primary Hypertension in Adults; Clinical Guidelines (CG127). 2011. 195.Valocik G, Kamp O, Mannaerts HF, Visser CA. New quantitative three-dimensional echocardiographic indices of mitral valve stenosis: new 3D indices of mitral stenosis. Int J Cardiovasc Imaging 2007; 23: 707–16. 196.Harada K, Saitoh T, Tanaka J et al. Valvulo-arterial impedance, but not aortic stenosis severity, predicts syncope in patients with aortic stenosis. Circ Cardiovasc Imaging 2013; 6: 1024–31. 197.Ha JW, Juracan EM, Mahoney DW et al. Hypertensive response to exercise: a potential cause for new wall motion abnormality in the absence of coronary artery disease. J Am Coll Cardiol 2002; 39: 323–7. 198.Fragasso G, Lu C, Dabrowski P et al. Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J Am Coll Cardiol 1999; 34: 441–7. 199.Schillaci G, de Simone G, Reboldi G et al. Change in cardiovascular risk profile by echocardiography in low- or medium-risk hypertension. J Hypertens 2002; 20: 1519–25. 200.Yoon SS, Burt V, Louis T, Carroll MD. Hypertension among adults in the united states, 2009–2010. NCHS Data Brief 2012; 107: 1–8. 201.Gottdiener JS, Bednarz J, Devereux R et al. American society of echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 2004; 17: 1086–119. 202.Douglas PS, DeCara JM, Devereux RB et al. Echocardiographic imaging in clinical trials: American Society of Echocardiography Standards for echocardiography core laboratories: endorsed by the American College of Cardiology Foundation. J Am Soc Echocardiogr 2009; 22: 755–65. 203.Galderisi M, Henein MY, D’Hooge J et al. Recommendations of the European Association of Echocardiography: how to use echo-Doppler in clinical trials: different modalities for different purposes. Eur J Echocardiogr 2011; 12: 339–53.
Поделиться ссылкой на выделенное
Прямая ссылка: