Атеросклероз: перспективы противовоспалительной терапии

Терапевтический архив №05 2018 - Атеросклероз: перспективы противовоспалительной терапии

Номера страниц в выпуске:4-12
Для цитированияСкрыть список
Е.Л. НАСОНОВ1,2, Т.В. ПОПКОВА1. Атеросклероз: перспективы противовоспалительной терапии. Терапевтический архив . 2018; 05: 4-12
Аннотация
По современным представлениям, хроническое субклиническое (low grade) воспаление, развитие которого связывают с неконтролируемой активацией как врожденного, так и приобретенного иммунитета, играет фундаментальную роль на всех стадиях атеросклеротического процесса. Вклад воспаления в развитие атеросклеротического поражения сосудов привлекает внимание к схожести механизмов иммунопатогенеза атеросклероза и классического иммуновоспалительного ревматического заболевания  – ревматоидного артрита. В аспекте участия в патогенезе атеросклеротического поражения сосудов и в качестве перспективной терапевтической «мишени» особый интерес представляет интерлейкин-1β (ИЛ-1β), играющий важную роль в развитии многих острых и хронических иммуновоспалительных заболеваний. Механизмы развития атеросклероза, связанные с ИЛ-1β, определяют способность кристаллов холестерина  и других «проатерогенных» факторов индуцировать синтез ИЛ-1β за счет активации NLRP3 инфламмасомы. Убедительные доказательства роли воспаления в развитии атеросклероза в целом и хорошие перспективы противовоспалительной терапии в частности получены в рандомизированном плацебо-контролируемом исследовании  CANTOS (Canakinumab Anti-inflammatory Thrombosis Otcomes Study), в котором изучали эффективность лечения моноклональными антителами к ИЛ-1β канакинумабом (Novartis International AG) у больных с тяжелым атеросклеротическим поражением сосудов как нового подхода к вторичной профилактике кардиоваскулярных осложнений. Результаты исследования CANTOS, а также опыт, накопленный в ревматологии в отношении кардиоваскулярных эффектов инновационных противовоспалительных препаратов, имеют огромное значение для совершенствования вторичной профилактики связанных с атеросклерозом кардиоваскулярных осложнений.

Ключевые слова: атеросклероз, ревматоидный артрит, цитокины, интерлейкин-1β, канакинумаб, тоцилизумаб.

https://doi.org/10.26442/terarkh20189054–12

Atherosclerosis: perspectives of anti-inflammatory therapy

E.L. NASONOV1,2, T.V. POPKOVA1

1V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia;
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia

According to modern ideas, chronic low-grade inflammation, which development is associated with uncontrolled activation of both innate and adaptive immunity, plays a fundamental role in all stages of the atherosclerotic process.
The contribution of inflammation to the development of atherosclerotic vascular lesions attracts attention to the similarity of the mechanisms of immunopathogenesis of atherosclerosis and classic inflammatory rheumatic disease – rheumatoid arthritis.
In the aspect of participation in the pathogenesis of atherosclerotic vascular lesions and as a promising therapeutic "target" of particular interest is interleukin-1β (IL-1β), which plays an important role in the development of many acute and chronic immunosuppressive diseases. 
The mechanisms of atherosclerosis associated with IL-1β determine the ability of cholesterol crystals and other "Pro-atherogenic" factors to induce the synthesis of IL-1β by activating NLRP3 inflammasome.
The mechanisms of atherosclerosis associated with IL-1β determine the ability of cholesterol crystals and other "proatherogenic" factors to induce the synthesis of IL-1β by activating NLRP3 inflammasome.
Convincing evidence for the role of inflammation in development of atherosclerosis in General and good prospects of anti-inflammatory therapy in particular obtained in a randomized placebo-controlled study called CANTOS (Canakinumab Anti-inflammatory Thrombosis Otcomes Study), which studied the effectiveness of treatment with monoclonal antibodies to IL-1β canakinumab (Novartis International AG) in patients with severe atherosclerotic vascular lesions as a new approach to secondary prevention of cardiovascular complications.
The results of CАNTOS research, as well as the experience gained in rheumatology in regard to cardiovascular effects of innovative anti-inflammatory drugs, have great importance for the improvement of secondary prevention of atherosclerosis-related cardiovascular complications.

Keywords: atherosclerosis, rheumatoid arthritis, cytokines, interleukin-1β, canakinumab, tocilizumab.

АД – артериальное давление
АЦБ – антитела к цитруллинированным белкам
ГИБП – генно-инженерные биологические препараты
ГМК – гладкомышечные клетки 
ИБС – ишемическая болезнь сердца 
ИВЗ – иммуновоспалительные заболевания
ИВРЗ –  иммуновоспалительное ревматическое заболевание
ИЛ – интерлейкин 
ИМ – инфаркт миокарда 
КИМ – комплекс интима-медиа
КФР – кардиоваскулярные факторы риска
ЛП(а) – липопротеин (а)
ЛПВП – липопротеины высокой плотности
ЛПНП – липопротеины низкой плотности
МУН – моноурат натрия 
НР – нежелательная реакция
ПГ – простагландины
п/к – подкожно 
ПЛ – плацебо 
РА – ревматоидный артрит 
Р – рецепторы 
РПКИ – рандомизированное плацебо-контролируемое исследование 
СД – сахарный диабет
СПВА – скорость пульсовой волны в аорте, м/с
СРБ – С-реактивный белок 
ФНО-α – фактор некроза опухоли-α 
ХС – холестерин 
ЭК – эндотелиальные клетки 

В настоящее время атеросклероз рассматривается как хроническое воспалительное заболевание сосудов, связанное с «патологической» активацией врожденного и приобретенного иммунитета, характеризующееся отложением липидов, лейкоцитарной инфильтрацией и пролиферацией сосудистых гладкомышечных клеток. Субклиническое (low grade) воспаление играет фундаментальную роль на всех стадиях прогрессирования атеросклеротического процесса и определяет развитие кардиоваскулярных катастроф и летальности [1–3]. Хотя воспалительный процесс не обязательно является «первичным» механизмом развития атеросклероза, но имеет решающее значение в реализации «атерогенных» эффектов классических кардиоваскулярных факторов риска (КФР). Однако молекулярные механизмы, определяющие роль КФР в формировании «воспалительного компонента» патогенеза атеросклероза, до последнего времени оставались не ясными. Важнейший аспект этой проблемы связан с изучением механизмов, определяющих причины раннего ускоренного развития атеросклероза при классическом иммуновоспалительном ревматическом заболевании (ИВРЗ) – ревматоидном артрите (РА), который характеризуется прогрессирующим локальным (деструкция суставов) и системным воспалительным поражением внутренних органов [4–8]. Высокий риск кардиоваскулярной летальности при РА выражен в той же степени, что и у пациентов с сахарным диабетом (СД) 2-го типа [9], и связан не только с традиционными КФР, но и с активностью воспалительного процесса [10–12], наблюдается уже в дебюте РА у пациентов молодого и среднего возраста и даже до развития клинических проявлений заболевания [13]. Фактическое атеросклеротическое поражение сосудов рассматривается как внесуставное (системное проявление) РА. Примечательно, что у многих больных  РА, уровни холестерина (ХС) и ХС липопротеинов низкой плотности (ХС ЛПНП) ниже, чем в популяции, и негативно коррелируют с активностью воспаления. Такой характер изменения липидного спектра, получивший название «(иммуно)-липидный парадокс», ассоциируется с высоким риском сердечно-сосудистых катастроф при РА и других иммуновоспалительных заболеваний (ИВЗ) [14]. Интересно, что развитие атеросклероза и кальцификация сосудов при РА связаны с обнаружением характерных для этого заболевания аутоантител – ревматоидного фактора (РФ) и антитела к цитруллинированным белкам (АЦБ) [15–19] не только при РА, но и в общей популяции пациентов, страдающих ишемической болезнью сердца (ИБС) [20]. Все это вместе взятое свидетельствует о существовании «воспалительного» субтипа атеросклеротического поражения сосудов и соответствует концепции о «резидуальном воспалительном риске» (residual inflammatory risk) в общей популяции пациентов с атеросклеротическим поражением сосудов, имеющих (на фоне лечения статинами) нормальный уровень ХС ЛПНП, но увеличение концентрации С-реактивного белка (СРБ) [21].
Среди многочисленных медиаторов, участвующих в иммунопатогенезе как атеросклероза, так и РА, важное место занимают такие «провоспалительные» цитокины, как интерлейкин (ИЛ)-1, ИЛ-6, фактор некроза опухоли-α (ФНО-α), ИЛ-17, ИЛ-18, ИЛ-27, ИЛ-33, ИЛ-37, тесно взаимодействующие друг с другом в рамках «цитокиновой» сети. 
[22–31]. Особое внимание привлекает ИЛ-1β [32], играющий важную роль в развитии многих острых и хронических ИВЗ [32, 33]. В качестве ведущего медиатора воспаления, связанного с активацией врожденного иммунитета, ИЛ-1β индуцирует синтез и усиливает «провоспалительные» эффекты ФНО-α, ИЛ-6, хемокинов, низкомолекулярных воспалительных медиаторов (оксид азота и простагландины – ПГ), экспрессию молекул адгезии на лейкоцитах и эндотелиальных клетках (ЭК), стимулирует гранулопоэз, обладает многочисленными деструктивными и катаболическими эффектами. Роль ИЛ-1β в развитии атеросклероза определяется многими механизмами: «прокоагулянтная» активность, усиление адгезии моноцитов и лейкоцитов к сосудистому эндотелию, роста сосудистых гладкомышечных клеток (ГМК) и др. [24, 32]. Наряду с собственно «провоспалительным» действием, ИЛ-1β участвует в регуляции приобретенного иммунного ответа, опосредованного Th (helper)1- и Th17-клетками, которым придают ключевое значение в патогенезе ИВЗ и, вероятно, атеросклеротического поражения сосудов. Синтез ИЛ-1β осуществляется макрофагами (и другими клетками врожденной иммунной системы) и индуцируется разнообразными патогенными стимулами (pathogen-associated molecular patterns – PAMPS и damage-associated molecular patterns – DAMPs), взаимодействующими так называемыми паттерн-разпознающими рецепторами (Pattern recognition receptors – PRRs). К последним относятся мембранные Toll-подобные рецепторы и цитоплазматические NOD (nucleotide-binding oligomerization domain-like receptors)-подобные рецепторы. Его биологически активная форма образуется в цитоплазме клеток из крупного (33 kDa) биологически неактивного предшественника – про-ИЛ-1β. Расщепление про-ИЛ-1β, приводящее к образованию функционально активного ИЛ-1β (17 kDa), опосредуется активацией инфламмасом – супрамолекулярных комплексов, которые формируются в цитоплазме клеток в ответ на PAMPs и DAMPs. Основное внимание привлечено к так называемой NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 или Nod-like receptor protein 3) инфламмасоме, которая катализирует конверcию цистеинового фермента прокаспазы 1 в каспазу 1 (ИЛ-1 – конвертирующий фермент), в свою очередь регулирующую образование ИЛ-1β (а также другого «провоспалительного» цитокина – ИЛ-18) из соответствующих предшественников [34]. Рассматривая молекулярные механизмы развития воспаления как факторы атерогенеза, привлекают внимание данные о способности кристаллов ХС и других «проатерогенных» факторов (нейтрофильные внеклеточные ловушки, гипоксия, ацидоз, нарушение кровотока в участках сосудов, подверженных атеросклерозу – atherophone) индуцировать синтез ИЛ-1β за счет активации сборки NLRP3-инфламмасомы [34]. Полагают, что именно этот процесс определяет взаимосвязь между КФР и воспалением, лежащими в основе развития и прогрессирования атеросклеротического поражения сосудов и атеротромбоза.
Один из важных механизмов, определяющий патогенный потенциал ИЛ-1, связан с его способностью индуцировать синтез ИЛ-6. Этот цитокин обладает выраженными «провоспалительными» и «проатерогенными» эффектами, во многом дополняющими (и перекрещивающимися) с механизмами действия ИЛ-1. Напомним, что ИЛ-6 – мультифункциональный (плейотропный) цитокин, который синтезируется иммунными и стромальными клетками в ответ на активацию Toll-подобных рецепторов. ИЛ-6 функционирует как аутокринный, паракринный и системный («гормоноподобный») «регулятор» разнообразных «нормальных» и «патологических» биологических процессов, в том числе регуляция острофазового ответа (СРБ и других белков острой фазы воспаления), «переключение» с «врожденного» на «приобретенный» тип иммунного ответа [активация Th (helper) 17-клеток и Т-фолликулярных Тh-клеток, подавление образования Т-регуляторных клеток], синтез антител В-клетками, стимуляция гемопоэза, регуляция нейроэндокринной системы (циркадные ритмы, когнитивные и эмоциональные нарушения, депрессия, боль, бессонница, усталость) и многие другие [35]. Данные, касающиеся участия ИЛ-6 в развитии атеросклероза, представлены в наших предыдущих публикациях [36] и обзорах других авторов [27]. ИЛ-6 играет ведущую роль в регуляции синтеза СРБ (негликозилированный циркулирующий пентраксин), увеличение концентрации которого является чувствительным биомаркером «субклинического» воспаления у пациентов с атеросклеротическим поражением сосудов и ассоциируется с риском последующего развития кардиоваскулярных катастроф [37, 38]. Уровень СРБ, определяемый с использованием высокочувствительных иммунологических методов (так называемый вчСРБ) в диапазоне от <1 мг/л (низкий), 1–3 мг/л (средний) и >3 мг/л (высокий), линейно коррелирует с нарастанием риска кардиоваскулярных осложнений в контексте других традиционных КФР [39]. Данные многочисленных исследований определенно свидетельствуют о том, что терапия статинами приводит к снижению концентрации не только липидов, но и вчСРБ и наиболее эффективна у пациентов с исходно повышенной концентрацией вчСРБ, не зависимо от уровня ХС ЛПНП [40, 41]. Следует напомнить, что определение вчСРБ включено в международные рекомендации по обследованию пациентов с умеренным риском кардиоваскулярных осложнений [39]. Примечательно, что увеличение концентрации СРБ ассоциируется с развитием атеросклеротического поражения сосудов и кардиоваскулярных катастроф у пациентов с РА [42, 43]. Данные эпидемиологических исследований подтверждают значение гиперпродукции ИЛ-6 в развитии атеросклероза и прогнозирования риска кардиоваскулярных осложнений. В рамках программы скрининга генома (Genome Wide Association Studies) выявлена ассоциация между носительством однонуклеотидных полиморфизмов (Single nucleotide polymorphism – SNP) гена, кодирующего ИЛ-6 рецептор (rs2228145 и rs7529229), низким уровнем вчСРБ и уменьшением риска кардиоваскулярных катастроф [44]. Концентрация ИЛ-6 лучше коррелирует с развитием кардиоваскулярных катастроф у пациентов со стабильной стенокардией, чем уровень вчСРБ [45]. Интересно, что при РА риск инфаркта миокарда (ИМ) ассоциируется с высокими значениями мультибимаркерного индекса активности (multibiomarker disease activity score), включающего 12 биомаркеров, в том числе ИЛ-6, СРБ и др. [46]. 
В качестве прямого доказательства фундаментальной роли воспаления в развитии атеросклероза особый интерес представляют исследования «антиатеросклеротических» эффектов препарата канакинумаб (Novartis International AG), который представляет собой полностью человеческие моноклональные антитела к ИЛ-1β и обладает способностью нейтрализовать активность этого цитокина [47]. Канакинумаб является единственным генно-инженерным биологическим препаратом (ГИБП), специфически связывающимся с ИЛ-1β, но не с ИЛ-1α или рецепторами (Р) ИЛ-1. В настоящее время канакинумаб официально разрешен для применения (или находится в стадии регистрации) при ряде так называемых аутовоспалительных синдромов, системном ювенильном идиопатическом артрите, болезни Стилла взрослых и подагрическом артрите. По незарегистрированным показаниям (off-label) он применяется при широком круге заболеваний, связанных с гиперпродукцией ИЛ-1 [33, 48]. Примечательно, что вначале канакинумаб разрабатывался для лечения РА и продемонстрировал достаточно высокую эффективность при этом заболевании [49]. Однако при анализе исследований II–III фаз  прогнозирована низкая вероятность более высокой эффективности канакинумаба по сравнению с другими ГИБП [50], что, к сожалению, привело к приостановке дальнейших клинических испытаний этого препарата при РА. 
Недавно завершена серия исследований, касающихся возможности использования терапии канакинумабом в качестве компонента вторичной профилактики у пациентов с высоким риском кардиоваскулярных осложнений [51–55]. Данные рандомизированного плацебо-контролируемого исследования (РПКИ) фазы IIa, в которое вошли пациенты с СД 2-го типа, имеющих высокий кардиоваскулярный риск, инфузия канакинумаба приводила к снижению сывороточной концентрации ИЛ-6, СРБ, фибриногена и гликогемоглобина (HbA1), в отсутствие отрицательной динамики концентрации сывороточных липидов [52]. Поскольку эти эффекты сохранялись в течение нескольких месяцев после однократного введения препарата, предполагается, что интермиттирующие курсы терапии канакинумабом (3–4 раза в год) могут позволить эффективно контролировать «воспалительный» компонент атеросклеротического поражения сосудов. Особый интерес представляет РПКИ CANTOS (Canakinumab ANti-inflammatory Thrombosis Otcomes Study), в котором изучали эффективность терапии канакинумабом как нового подхода к вторичной профилактике кардиоваскулярных осложнений в общей популяции больных с тяжелым атеросклеротическим поражением сосудов [53]. В исследование включено более 10 000 пациентов с ИБС, у которых наблюдалось увеличение концентрации вчСРБ >2 мг/л (табл. 1). Хотя все пациенты получали терапию адекватными дозами статинов, что позволяло поддерживать низкий уровень ХС ЛПНП, остаточный кардиоваскулярный риск у них составил >20% в течение 5 лет [21]. Первичной «конечной точкой» исследования являлась частота повторных кардиоваскулярных катастроф (ИМ и инсульт) и кардиоваскулярной летальности, а вторичной «конечной точкой» – перечисленные выше осложнения и случаи госпитализации в связи с нестабильной стенокардией, потребовавшей реваскуляризации коронарных артерий. Пациенты  рандомизированы на 4 группы: канакинумаб [50; 150 и 300 мг 1 раз в 3 мес подкожно (п/к) и плацебо (ПЛ)]. Поскольку количественное определение концентрации ИЛ-1β в плазме затруднено, уровень вчСРБ служил «суррогатным» биомаркером противовоспалительной активности канакинумаба. Через 48 мес у пациентов, получавших канакинумаб (по сравнению с группой ПЛ), отмечено снижение концентрации вчСРБ: на 26% (канакинумаб 50 мг), на 37% (канакинумаб 150 мг) и на 41% (канакинумаб 300 мг). При этом динамики концентрации липидов в сравниваемых группах не отмечено. Через 3,7 года (в среднем) риск кардиоваскулярных осложнений у пациентов, получавших канакинумаб в дозах 150 и 300 мг, оказался достоверно ниже, чем в группе ПЛ (табл. 2). Сходные данные получены в отношении распределения рисков развития всех анализируемых кардиоваскулярных осложнений (табл. 3). При этом на фоне лечения канакинумабом наиболее существенное снижение риска кардиоваскулярных катастроф (и общей летальности) отмечено у пациентов, у которых наблюдалась нормализация концентрации вчСРБ (<2 мг/л), после первой инфузии препарата [55] (табл. 4). Эти результаты представляют особый интерес, поскольку в предыдущих исследованиях показано, что на фоне гиполипидемической терапии статинами (и блокатором абсорбции ХС в кишечнике – эзетимидом) наиболее выраженное снижение частоты кардиоваскулярных осложнений имеет место у пациентов с низкой концентрацией как ХС ЛПНП, так и вчСРБ [41, 56]. По данным предварительного анализа, если в целом по группе пациентов лечение канакинумабом давало значение показателя NNT (число больных, которых необходимо лечить) для достижения всех исследуемых конечных точек – 24, то у пациентов с низкой концентрацией вчСРБ  (<2 мг/л) – 16, а у пациентов с концентрацией вчСРБ >2 мг/л –  57. Таким образом, вчСРБ является чувствительным и специфичным биомаркером эффективности терапии канакинумабом. 1.jpg
2.jpg
Это открывает перспективы для персонификации терапии пациентов с атеросклеротическим поражением сосудов, в том числе c точки зрения фармакоэкономических перспектив, учитывая высокую стоимость терапии этим препаратом. Важным итогом исследования явились данные о снижении смертности, связанной со злокачественными новообразованиями (p=0,007) [54], особенно рака легкого (p<0,0001) и рака легкого, закончившегося летальным исходом (p=0,0002). В группе, получавшей высокую дозу канакинумаба (300 мг), отмечено 50% снижение летальности, связанной со злокачественными новообразованиями (p=0,0009). Это соответствует данным об участии ИЛ-1 в онкогенезе [57]. Кроме того, отмечено снижение частоты поражения суставов, в том числе при подагре. Следует также подчеркнуть, что в исследование CANTOS вошла большая группа пациентов, страдающих СД 2-го типа, а одной из конечных точек исследования является оценка влияния канакинумаба на развитие диабетической нефропатии. В связи с этим представляют интерес данные о важной роли ИЛ-1 в патогенезе СД 2-го типа и связанных с ним кардиоваскулярных осложнений [58]. Предварительные результаты других исследований свидетельствуют о том, что на фоне лечения канакинумабом отмечено снижение концентрации HbA1 и уменьшение числа и выраженности признаков диабетической ретинопатии сетчатки [59–61]. К сожалению, различия в группах пациентов, получавших канакинумаб и ПЛ, в отношении общей летальности отсутствовали (р=0,31). Более того, лечение канакинумабом ассоциировалось с увеличением частоты фатальных инфекционных осложнений (табл. 5), а также умеренной нейтропенией, которая не коррелировала с развитием инфекционных осложнений. Эти данные свидетельствуют о необходимости тщательного динамического наблюдения за пациентами, согласно рекомендациям, касающимся применения ГИБП в ревматологии. 
Как уже отмечалось, не только кристаллы ХС, но и кристаллы моноурата натрия (МУН), образование которых является ключевым механизмом патогенеза подагрического артрита, и даже растворимая мочевая кислота в высокой концентрации вызывают активацию NLRP3-инфламмасомы, приводящую к синтезу ИЛ-1β [33, 62]. Нами (М.С. Елисеев и соавт.) проведено исследование, касающееся влияния терапии канакинумабом (одно подкожное введение в дозе 150 мг) на структурно-функциональные характеристики сосудистого русла, жесткость сосудистой стенки у 20 больных хронической тофусной подагрой [63]. Определение уровня вчСРБ, ИЛ-6, суточное мониторирование артериального давления (АД), дуплексное сканирование сонных артерий (толщина КИМ), определение ригидности центральных артерий (скорость пульсовой волны в аорте – СПВА, м/с) проводили перед введением канакинумаба, на 14-й и 120-й дни после инъекции препарата. На фоне лечения отмечено уменьшение толщины КИМ (p=0,022) и СПВА, динамика которой коррелировала с курированием симптомов артрита, снижением уровня вчСРБ (p=0,043) и концентрации ИЛ-6 (p=0,003). 
Важные, хотя и косвенные, доказательства роли ИЛ-1 в развитии атеросклероза и целесообразность терапевтической стратегии, связанной с ингибицией этого цитокина, получены в процессе применения препарата колхицин, который широко используется в ревматологии для лечения семейной средиземноморской лихорадки, болезни Бехчета и подагрического артрита [64]. Установлено, что колхицин обладает способностью синтеза ИЛ-1β за счет интерференции с активацией NALP3 инфламмасомы [67–69], как в полости сустава [67], так и в ткани миокарда [68, 69]. По данным исследования LoDoCo (Low-Dose Colchicine trial) у пациентов со стабильной ИБС прием колхицина (0,5 мг/сут) в сочетании со стандартной терапией приводит к снижению частоты кардиоваскулярных катастроф [70]. В других недавних исследованиях показано, что у пациентов с острым коронарным синдромом терапия колхицином приводит к уменьшению объема коронарных бляшек (маркер нестабильности бляшки и предиктор кардиоваскулярных осложнений) [71], а также размера зоны ИМ [72]. 
В настоящее время запланирована серия РПКИ (COLCOT – Colchicine Cardiovascular Outcome Trial и LoDoCo2), включающих более 5 тыс. пациентов с различными формами кардиоваскулярной патологии (стабильная ИБС, недавно перенесенный ИМ, ангиопластика коронарных артерий), направленных на изучение возможности использования колхицина (или колхицина в комбинации с метотрексатом) для снижения риска кардиоваскулярных осложнений [73]. 
Другой терапевтической «мишенью» в отношении подавления прогрессирования атеросклеротического поражения сосудов является ИЛ-6. Моноклональные антитела, блокирующие ИЛ-6-рецепторы, –  тоцилизумаб с успехом применяют для лечения РА [74]. Однако в отличие от ИЛ-1, ИЛ-6 проявляет не только «проатерогенные», но и «антиатерогенные» эффекты [27], а его ингибиция у пациентов с РА приводит к нарастанию концентрации «атерогенных» липидов [75, 76]. В то же время на фоне лечения тоцилизумабом подавление активности воспаления приводит к нормализации функции эндотелия, улучшению качественного состава липидов, снижению синтеза ряда «проатерогенных» биомакеров, включая ЛП(а) [77–81]. По данным пилотного исследования, инфузия тоцилизумаба пациентам с ИМ без подъема сегмента ST приводила к снижению концентрации вчСРБ и тропонина Т и не сопровождалась нежелательными кардиоваскулярными реакциями [81]. Полагают также, что блокада ИЛ-6 вызывает увеличение концентрации ХС ЛПНП в большей степени за счет подавления катаболизма, чем увеличение его синтеза [82]. Ретроспективный анализ результатов контролируемых исследований показал, что развитие сердечно-сосудистых осложнений у пациентов с РА на фоне тоцилизумаба в большей степени зависит не от гиперлипидемии, а от активности воспалительного процесса при недостаточной эффективности проводимой терапии [83]. По данным исследования ADACTA (ADalimumab ACTemrA), применение тоцилизумаба в виде монотерапии сопровождалось более существенным увеличением концентрации ХС ЛПНП и ХС ЛПВП по сравнению с монотерапией человеческими моноклональными антителами к ФНО-α – адалимумабом. Однако в группе тоцилизумаба снижение «атерогенных» ХС ЛПВП (содержащих сывороточный амилоидный белок А), сывороточной фосфолипазы А и ЛП(а) выражено в большей степени, чем в группе адалимумаба. При анализе большой когорты пациентов с РА нарастания частоты кардиоваскулярных осложнений у пациентов с РА, которые получали тоцилизумаб, по сравнению с пациентами, получавшими ингибиторы ФНО-α, не отмечено [85]. В то же время, согласно данным исследования ENTRANCE, у пациентов с РА, леченных тоцилизумабом, отмечено увеличение частоты кардиоваскулярных осложнений (а также более выраженное нарастание уровня ХС ЛПНП) по сравнению с пациентами, получавшими ингибитор ФНО-α – этанерцепт [87]. Таким образом, перспективы ингибиции ИЛ-6 для снижения риска развития кардиоваскулярных осложнений требуют дальнейшего изучения.

Заключение

Таким образом, необходимо почеркнуть, что данные многочисленных исследований свидетельствуют о разнообразных «антиатерогенных» эффектах (улучшение функции эндотелия, «антиатерогенные» изменения композиции и свойств липидов, положительное влияние на обратный транспорт ХС и др.) метотрексата, ГИБП, а также  «малые молекулы», подавляющие активность JAK (Janus kinase) [87]. В то же время подавление воспаления на фоне противовоспалительной терапии ассоциируется с дислипидемией [53], в том числе увеличением «атерогенного» ХС ЛПНП, что в ряде случаев диктует необходимость интенсификации терапии статинами [14, 75]. Этот факт, а также увеличение риска нежелательных лекарственных реакций (в первую очередь инфекционных осложнений) и высокая стоимость терапии препятствуют более широкому изучению эффективности перечисленных выше препаратов в отношении вторичной профилактики кардиоваскулярных осложнений у пациентов с атеросклеротическим поражением сосудов и внедрению их в клиническую практику. Тем не менее, пионерские результаты исследования CANTOS в сочетании со знаниями, накопленными в ревматологии в отношении кардиоваскулярных эффектов противовоспалительных препаратов, имеют огромное значение для персонификации подходов к вторичной профилактике связанных с атеросклерозом кардиоваскулярных осложнений и вносят вклад в развитие «воспалительной» теории патогенеза атеросклероза в целом.

Прозрачность исследования

Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Статья предоставлена в качестве информационной и образовательной поддержки врачей. Мнения, высказанные в статье, отражают точку зрения авторов, которая не обязательно совпадает с точкой зрения фармацевтических компаний.

Декларация о финансовых и других взаимоотношениях

Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами. Авторы подтверждают, что получают гонорары за консультационные услуги в области научной и педагогической деятельности (образовательные услуги, научные статьи, участие в экспертных советах, участие в исследованиях и др.).

Сведения об авторах:
Попкова Татьяна Валентиновна – д.м.н., руководитель лаб. системных ревматических заболеваний с группой гемореологических нарушений, ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»

Контактная информация:
Насонов Евгений Львович – научный руководитель ФГБНУ «Научно-исследовательский институт им. В.А. Насоновой», e-mail: nasonov@irramn.ru
doi: http://dx.doi.org/10.14412/1995-4484-2017-
Список исп. литературыСкрыть список
1. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999; 340: 419-20. doi:10.1016/S0002-8703(99)70266-8
2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352: 1685-1695.
3. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: fr om pathophysiology to practice. J Am Coll Cardiol. 2009; 54: 2129-2138.
4. Pasceri V, Yeh ET. A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation. 1999; 100:2124-6. doi: 10.1161/01.CIR. 100.21.2124
5. Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how “high‐grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 2003; 108:2957-2963.
6. Насонов Е.Л. Проблема атеротромбоза в ревматологии. Вестник РАМН. 2003; (7):6-10 [Nasonov EL. The problem of atherothrombosis in rheumatology. Vestnik RAMN. 2003; (7):6-10. (In Russ.)].
7. Насонов Е.Л., Попкова Т.В., Новикова Д.С. Сердечно-сосудистая патология при ревматических заболеваниях. Терапевтический архив. 2016; (5):3-10 [Nasonov EL, Popkova TV, Novikova DS. Cardiovascular pathology in rheumatic diseases. Terapevticheskii Arkhiv. 2016; (5):3-10. (In Russ.)].
8. Nurmohamed MT, Heslinga M, Kitas GD. Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol. 2015; 11: 693-704.
9. Lindhardsen J, Ahlehoff O, Gislason GH et al. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann Rheum Dis. 2011; 70:929-34. doi:10.1136/ ard.2010.143396
10. Arts EE, Fransen J, Den Broeder AA, van Riel PLCM, Popa CD. Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: a time-dependent Cox regression analysis in a large cohort study. Ann Rheum Dis. 2017; 76(10):1693-1699. doi: 10.1136/annrheumdis-2016-210997
11. Arida A, Protogerou AD, Konstantonis G, Fragiadaki K, Kitas GD, Sfikakis PP. Atherosclerosis is not accelerated in rheumatoid arthritis of low activity or remission, regardless of antirheumatic treatment modalities. Rheumatology (Oxford). 2017; 56(6):934-939. doi: 10.1093/rheumatology/kew506.
12. Solomon DH, Reed GW, Kremer JM et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheum. 2015; 67(6):1449-55. doi: 10.1002/art.39098
13. Kokkonen H, Stenlund H, Rantapää-Dahlqvist S. Cardiovascular risk factors predate the onset of symptoms of rheumatoid arthritis: a nested case-control study. Arthritis Res Ther. 2017; 19(1):148. doi: 10.1186/s 13075-017-1351-8.
14. Myasoedova E. Lipids and lipid changes with synthetic and biologic disease-modifying antirheumatic drug therapy in rheumatoid arthritis: implications for cardiovascular risk. Curr Opin Rheumatol. 2017; 29(3):277-84. doi: 10.1097/BOR.0000000000000378
15. Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation: mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur Heart J. 2015; 36(8):482-9c. doi: 10.1093/eurheartj/ehu403
16. Vázquez-Del Mercado M, Nuñez-Atahualpa L, Figueroa-Sánchez M et al. Serum levels of anticyclic citrullinated peptide antibodies, interleukin-6, tumor necrosis factor-α, and C-reactive protein are associated with increased carotid intima-media thickness: a cross-sectional analysis of a cohort of rheumatoid arthritis patients without cardiovascular risk factors. Biomed Res Int. 2015;2015:342649.
17. Spinelli FR, Pecani A, Ciciarello F et al. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMS Musculoskeletal disorders. 2017; 18: 214. 2017 May 25. doi: 10.1186/s12891-017-1563-8
18. Geraldino-Pardilla L, Giles JT, Sokolove J, Zartoshti A, Robinson WH, Budoff M, Detrano R, Bokhari S, Bathon JM. Association of Anti-Citrullinated Peptide Antibodies With Coronary Artery Calcification in Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2017; 69(8):1276-1281. doi: 10.1002/acr.23
19. Okano T, Inui K, Sugioka Y, Sugioka K, Matsumura Y, Takahashi S, Tada M, Mamoto K, Wakitani S, Koike T, Nakamura H. High titer of anti-citrullinated peptide antibody is a risk factor for severe carotid atherosclerotic plaque in patients with rheumatoid arthritis: the
TOMORROW study. Int J Rheum Dis. 2017; 20(8):949-959. doi: 10.1111/1756-185X.13106.
20. Hermans MPJ, van der Velden D, Montero Cabezas JMM, Putter H et al. Long-term mortality in patients with ST-segment elevatiob myocardial infarction is associated with anti-citrullinated protein antibodies. Int J Cardiol. 2017; 240: 20-24.
21. Ridker PM. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 2016;37:1720-2. doi: 10.1093/eurheartj/ehw024
22. Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry (Mosc). 2016; 81(11):1358-1370.
23. Van Tassel BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013; 128:1910-23. doi: 10.1161/CIRCULATION.113.003199
24. Libby PJ. A Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Amer Coll Cardiol. 2017; 31;70(18):2278-2289. doi: 10.1016/j.jacc.2017.09.028
25. Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145-56. doi: 10.1161/CIRCRESAHA.115.
306656
26. Ray M, Autieri MV. Regulation of pro- and anti-atherogenic cytokines. Cytokines. 2017 Dec 6. pii: S1043-4666(17)30289-2. doi: 10.1016/j. cyto. 2017.09.031
27. Reis A, Siegat NM, de Leon J. Interkeukin-6 in atherosclerosis: atherogenic or atheroprotective. Clin Lipidol. 2017; 12:14023.
28. van der Heijden T, Bot I, Kuiper J. The IL-12 cytokine family in cardiovascular diseases. Cytokine. 2017 pii: S1043-4666(17)30315-0. doi: 10.1016/j.cyto.2017.10.010.
29. Damen MSMA, Popa CD, Netea MG, Dinarello CA, Joosten LAB. Interleukin-32 in chronic inflammatory conditions is associated with a higher risk of cardiovascular diseases. Atherosclerosis. 2017;264:83-91. doi: 10.1016/j.atherosclerosis.2017.07.005
30. Robert M, Miossec P. Effects of interleukin 17 on the cardiovascular system. Autoimmun Rev. 2017; 16:984-91. doi: 10.1016/j. autrev.2017.07.009
31. Zhuang X, Wu B, Li J, Shi H, Jin B, Luo X. The emerging role of interleukin-37 in cardiovascular diseases. Immun Inflamm Dis. 2017; 5(3):373-379. doi: 10.1002/iid3.159
32. Dinarello CA. An expanding role for interleukin-1 blockade from gout to cancer. Molecular Med. 2014; 20 (Suppl 1):S43-S58. doi: 10.2119/molmed.2014.00232
33. Насонов Е.Л., Елисеев М.С. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77. [Nasonov EL, Eliseev MS. The role of interleukin-1 in the development of human diseases. Nauchno-prakticheskaya revmatologiya. 2016;54(1):60-77. (In Russ.)]. doi:10.14412/ 1995-4484-2016-60-77
34. Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb. 2017; 24(5):443-51. doi: 10.5551/jat.RV17001
35. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015; 15: 448-457. doi:10.1038/ni1117-1271b
36. Попкова Т.В., Новикова Д.С., Насонов Е.Л. Интерлейкин 6 и сердечно-сосудистая патология при ревматоидном артрите. Научно-практическая ревматология. 2011; 4: 64-72. [Popkova TV, Novikova DS, Nasonov EL. Interleukin 6 and cardiovascular disease in rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya. 2011; 4: 64-72. (In Russ.)].
37. Pokharel Y, Sharma PP, Qintar M et al. High-sensitivity C-reactive protein levels and health status outcomes after myocardial infarction. Atherosclerosis. 2017; 266:16-23.
38. Wang A, Liu J, Li C et al. Cumulative exposure to high-sensitivity C-reactive protein predicts the risk of cardiovascular disease. J Am Heart Assoc. 2017; 6: e005610.
39. Ridker PM. A test in context. High-sensitive C-reactive protein. J Amer Coll Cardiol. 2016; 67: 712-723.
40. Braunwald E. Creating controversy wh ere none exists: the important role of C-reactive protein in the CARE, AFCAPS/TexCAPS, PROVE IT, REVERSAL, A to Z, JUPITER, HEART PROTECTION, and ASCOT trials. Eur Heart J. 2012; 33: 430-432.
41. Bohula EA, Giugliano RP, Cannon CP et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015; 132: 1224-1233.
42. Navarro-Millan I, Yang S, DuVall SL, Chen L, Baddley J, Cannon GW, Delzell ES, Zhang J, Safford MM, Patkar NM, Mikuls TR, Singh JA, Curtis JR. Association of hyperlipidaemia, inflammation and serological status and coronary heart disease among patients with rheumatoid arthritis: data from the National Veterans Health Administration. Ann Rheum Dis. 2016;75:341-7.
43. Meissner Y, Angela Zink A, Kekow J, Rockwitz K, Liebhabe A et al. Impact of disease activity and treatment of comorbidities on the risk of myocardial infarction in rheumatoid arthritis. Arthritis Research Ther. 2016; 18:183. https://doi.org/10.1186/s13075-016-1077-z
44. Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012; 379:1205-13.
45. Held C, White HD, Stewart RAH, Budaj A, Cannon CP et al. STABILITY Investigators. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017; 6(10). pii: e005077. doi: 10.1161/JAHA.116.005077
46. Curtis JR, Xie F Chen L, Saag KG, Yun H, Muntner P. Biomarker-related risk for myocardial infarction and serious infections in patients with rheumatoid arthritis: a population-based study. 2017 Dec 21. pii: annrheumdis-2017-211727. doi: 10.1136/annrheumdis-2017-211727
47. Gram H. Preclinical characterization and clinical development of ILARIS® (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol. 2016; 32:1-9. doi: 10.1016/j.cbpa.2015.12.003
48. Cavalli G, Dinarello CA. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology (Oxford). 2015; 54(12):2134-44. doi: 10.1093/rheumatology/kev269
49. Alten R, Gomez-Reino J, Durez P, Beaulieu A, Sebba A, Krammer G, Preiss R, Arulmani U, Widmer A, Gitton X, Kellner Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, Phase II, dose-finding study. BMS musculoskeletal Disord. 2011; 12:153. doi: 10.1186/1471-2474-12-153
50. Demin I, Hamren B, Luttringer O et al. Longitudinal model-based meta-analysis in rheumatoid arthritis: an application toward model-based drug development. Clinical Pharm Ther. 2012; 92:352-9. doi: 10.1038/clpt.2012.69
51. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011; 162:597-605. doi: 10.1016/j.ahj. 2011.06.012
52. Ridker PM, Howard CP, Walter V et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012; 126:2739-48. doi: 10.1161/CIRCULATIONAHA.112.122556
53. Ridker PM, Everett BM, Thuren T et al. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017 Aug 27. doi: 10.1056/NEJMoa1707914
54. Ridker PM, MacFadyen JG, Thuren T et al. CANTOS Trial Group. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017 Aug 25. doi: 10.1016/S0140-6736(17)32247-X
55. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. CANTOS Trial Group. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2017 Nov 13. pii: S0140-6736(17)32814-3. doi: 10.1016/ S0140-6736(17)32814-3
56. Nissen SE, Tuzcu EM, Schoenhagen P et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005; 352: 29-38.
57. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140:883-99. doi: 10.1016/j.cell.2010.01.025
58. Herder C, Dalmas E, Boni-Schnetzler M, Donath MY. The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol Metasb. 2015; 26:551-63. doi: 0rg/10.1016/j.tem.2015.08.001
59. Rissanen A, Howard CP, Botha J, Thuren T. Global Investigators. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab. 2012; 14:1088-96. doi: 10.1111/j.1463-1326.2012.01637.x
60. Hensen J, Howard CP, Walter V, Thuren T. Impact of interleukin-1β antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 2013; 39:524-31. doi: 10.1016/j.diabet.2013.07.003
61. Stahel M, Becker M, Graf N, Michels S. Systemic interleukin 1β inhibition in proliferative diabetic retinopathy: A Prospective Open-Label Study Using Canakinumab. Retina. 2016 Feb; 36(2):385-91. doi: 10.1097/IAE.0000000000000701.
62. Rock KL, Kataoka H, Lai J-J. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013; 9:13-23. doi: 10.1038/nrheum.2012/143
63. Елисеев М.С., Желябина О.В., Маркеловa Е.И. и др. Оценка кардиоваскулярного риска при применении ингибитора интерлейкина 1 у больных тяжелой тофусной подагрой. Современная ревматология. 2016; 10(1):7-14. [Eliseev MS, Zhelyabina OV, Markelova EI et al. Assessment of cardiovascular risk from the use of an interleukin-1 inhibitor in patients with severe tophaceous gout. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2016; 10(1):7-14 (In Russ.)]. doi: 10.14412/1996-7012-2016-1-7-14
64. Leung YY, Hui LLY, Kraus VB. Colchicine – update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015; 45(3):341-50. doi: 10.1016/j.semarthrit.2015.06.013
65. Crittenden DB, Lehmann RA, Schneck L et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012; 39:1458-64. doi: 10.3899/jrheum. 111533
66. Solomon DH, Liu CC, Kuo IH et al. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016; 75(9):1674-9. doi: 10.1136/annrheumdis-2015-207984
67. Demidowich AP, Davis AI, Dedhia N, Yanovski JA. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation. Med Hypotheses. 2016; 92:67-73. doi: 10.1016/j.mehy.2016.04.039
68. Martinez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, Celermajer DS, Patel S. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome. J Am Heart Assoc. 2015; 4:e002128. doi:10/1161/JAHA.115.002128
69. Robertson S, Martínez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, Patel S. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (London). 2016; 130(14):1237-46. doi: 10.1042/ CS20160090
70. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013; 61:404-10. doi: 10.1016/j.jacc.2012.10.027
71. Vaidya K, Arnott C, Martínez GJ, Ng B, McCormack S, Sullivan DR et al. Colchicine Therapy and Plaque Stabilization in Patients With Acute Coronary Syndrome: A CT Coronary Angiography Study. JACC Cardiovascular Imaging. 2017 Oct 14. pii: S1936-878X(17)30791-X. doi: 10.1016/j.jcmg.2017.08.013
72. Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G et al. Anti-Inflammatory Treatment With Colchicine in Acute Myocardial Infarction: A Pilot Study. Circulation. 2015; 132:1395-403. doi:10.1161/CIRCULATIONAHA.115.017611
73. Tousoulis D, Oikonomou E, Economou EK et al. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016; 37:1723-32. doi: 10.1093/eurheartj/ehv759
74. Насонов Е.Л., редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. [Nasonov EL, editor. Genno-inzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita. Genetically engineered biological agents in the treatment of rheumatoid arthritis. Moscow: IMA-PRESS; 2013. (In Russ.)].
75. Charles-Schoeman C, Gonzalez-Gay MA, Kaplan I, Boy M, Geier J, Luo Z, Zuckerman A, Riese R. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin Arthritis Rheum. 2016; 46(1):71-80. doi: 10.1016/j.semarthrit.2016.03.004
76. Strang AC, Bisoendial RJ, Kootte RS, Schulte DM, Dallinga-Thie GM, Levels JH, Kok M, Vos K, Tas SW, Tietge UJ, Muller N, Laudes M, Gerlag DM, Stroes ES, Tak PP. Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis. Atherosclerosis. 2013; 229:174-81.
77. McInnes IB, Thompson L, Giles JT, Bathon JM, Salmon JE, Beaulieu AD, Codding CE, Carlson TH, Delles C, Lee JS, Sattar N. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis. 2015; 74:694-702.
78. Ruiz-Limón P, Ortega R, Arias de la Rosa I, Abalos-Aguilera MDC, Perez-Sanchez C et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Trans Resl. 2017; 183:87-103. doi: 10.1016/j.trsl.2016.12.003
79. García-Gómez C, Martín-Martínez MA, Castañeda S, Sanchez-Alonso F, Uriarte-Ecenarro M et al.CARMA Project Collaborative Group. Lipoprotein(a) concentrations in rheumatoid arthritis on biologic therapy: Results from the CARdiovascular in rheuMAtology study project. J Clin Lipidol. 2017; 11(3):749-756. e3. doi: 10.1016/j.jacl.2017. 02.018
80. Bacchiega BC, Bacchiega AB, Usnayo MJ, Bedirian R, Singh G, Pinheiro GD. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J Amer Heart Assoc. 2017; 6(3). pii: e005038. doi: 10.1161/JAHA.116.005038
81. Gabay C, McInnes IB, Kavanaugh A, Tuckwell K, Klearman M, Pulley J, Sattar N. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2016; 75(10):1806-12. doi: 10.1136/annrheumdis-2015-207872
82. Kleveland O, Kunszt G, Bratlie M, Ueland T, Broch K, Holte E, Michelsen AE, Bendz B, Amundsen BH, Espevik T, Aakhus S, Damås JK, Aukrust P, Wiseth R, Gullestad L. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016; 37(30):2406-13. doi: 10.1093/eurheartj/ehw171
83. Robertson J, Porter D, Sattar N, Packard CJ, Caslake M, McInnes I, McCarey. Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis. Ann Rheum Dis. 2017; 76(11):1949-1952. doi: 10.1136/annrheumdis-2017-21170
84. Rao VU, Pavlov A, Klearman M, Musselman D, Giles JT, Bathon JM et al. An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheumatol. 2015; 67:372-80.
85. Kim SC, Solomon DH, Rogers JR, Gale S, Klearman M. Cardiovascular Safety of Tocilizumab Versus Tumor Necrosis Factor Inhibitors in Patients With Rheumatoid Arthritis: A Multi-Database Cohort Study. Arthritis Rheum. 2017; 69: 1154-1164. doi: 10.1002/art.40084
86. Giles JT, Sattar N, Gabriel SE, Ridker PM, Gay S, Warne C, Musselman D, Brockwell L, Shittu E, Klearman M, Fleming T. Comparative Cardiovascular Safety of Tocilizumab Vs Etanercept in Rheumatoid Arthritis: Results of a Randomized, Parallel-Group, Multicenter, Noninferiority, Phase 4 Clinical Trial [abstract]. Arthritis Rheumatol. 2016; 68 (suppl 10).
87. Kraakman MJ, Dragoljevic D, Kammoun HL, Murphy AJ. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis. Clin Transl Immunol. 2016; 5(5):e84. doi: 10.1038/cti.2016.31
Поступила 29.01.18
Количество просмотров: 210
Следующая статьяАлгоритм диагностики системных васкулитов, ассоциированных с антинейтрофильными цитоплазматическими антителами

Поделиться ссылкой на выделенное