Исследования и практика в медицине №03 2021

О механизмах противоопухолевого действия соединений трополонового ряда

Номера страниц в выпуске:118-132
В обзоре приведены сведения о механизмах противоопухолевого действия природных и синтетических соединений трополонового ряда, полученные в течение последних 30 лет в исследованиях на культурах клеток и, в меньшей степени, в экспериментах in vivo. Интерес к данной группе веществ обусловлен острой потребностью клинической онкологии в средствах, эффективно повреждающих злокачественные клетки и, одновременно, безопасных для здоровых тканей. Наиболее полно изучены процессы, реализующие эффекты колхицина, хинокитиола (ß-туйяплицина) и некоторых их дериватов (производные бистрополона, α-замещенные трополоны и др). При этом были выявлены более многочисленные механизмы реализации противоопухолевого действия хинокитиола и его производных по сравнению с колхицином. Помимо нарушения формирования веретена деления, показанного для колхицина и колхамина, описаны такие явления, как каспазо-зависимый апоптоз и некоторые другие виды апоптоза, аутофагия, ограничение митохондриального метаболизма, повреждение и деметилирование ДНК, ускоренное старение малигнизированных клеток и проч.
Показана перспективность использовавния производных 2‑хинолил 1,3‑трополона и связь их противоопухолевого действия с индукцией апоптоза и изменением активности сигнального пути ERK в некоторых типах малигнизированных клеток. Полученные результаты свидетельствуют о многообразии возможных путей влияния трополонов на состояние злокачественных клеток, условия реализации каждого из которых нуждаются в уточнении, особенно при дефиците сведений о процессах in vivo.
В обзоре использованы сведения литературы, представленной в базах данных Scopus, WoS, Pubmed. 35 % работ опубликовано за последние 5 лет.
Список исп. литературыСкрыть список
1. Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiothera-py on Spermatogenesis: The Role of Testicular Immunology. Int J Mol Sci. 2019 Feb 22;20(4):957. https://doi.org/10.3390/ijms20040957
2. Damia G, Broggini M. Platinum Resistance in Ovarian Can-cer: Role of DNA Repair. Cancers (Basel). 2019 Jan 20;11(1):119. https://doi.org/10.3390/cancers11010119
3. Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Ma-rone G, et al. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol. 2018;9:167.
https://doi.org/10.3389/fphys.2018.00167
4. Kit OI, Shikhlyarova AI, Zhukova GV, Maryanovskaya GY, Barsu-kova LP, Korobeinikova EP, et al. Activation therapy: theoretical and applied aspects. Cardiometry. 2015;7:22–29. (In Russian). https://doi.org/10.12710/cardiometry.2015.7.2229
5. Sagakyants A.B. United immunological forum: current trends in the development of fundamental and applied oncoimmu-nology (Novosibirsk, 2019). South Russian Journal of Cancer. 2020;1(2):36-45. (In Russian).
https://doi.org/10.37748/2687-0533-2020-1-2-5
6. Lloyd D. Carbocyclic Non-Benzenoid Aromatic Compounds. El-sevier. Amsterdam-London-New-York. 1966, 220 p.
7. Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Bio-phys Res Commun. 2006 Dec 8;351(1):26–32.
https://doi.org/10.1016/j.bbrc.2006.09.166
8. Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle ar-rest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203.
https://doi.org/10.1371/journal.pone.0104203
9. Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the antiproliferative effects of tropolone deriva-tives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018
10. Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthe-sis and cytotoxic activity of [benzo[b][1,4]oxazepino[7,6,5-de] quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015 Mar 1;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2
11. Tkachev VV, Sayapin YuA, Tupaeva IO, Gusakov EA, Shilov GV, Aldoshin SM, et al. Structure of 2-(benzoxazole-2-Yl)-5,7-di(tert-butyl)-4-nitro-1,3-tropolone. J Struct Chem. 2018 Jan 1;59(1):197–200. https://doi.org/10.1134/S0022476618010316
12. Zhao J. Plant troponoids: chemistry, biological activity, and biosynthesis. Curr Med Chem. 2007;14(24):2597–2621. https://doi.org/10.2174/092986707782023253
13. Shih Y-H, Chang K-W, Hsia S-M, Yu C-C, Fuh L-J, Chi T-Y, et al. In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res. 2013 Jun 12;168(5):254–262.
https://doi.org/10.1016/j.micres.2012.12.007
14. Elagawany M, Hegazy L, Cao F, Donlin MJ, Rath N, Tavis J, et al. Identification of 4-isopropyl–thiotropolone as a novel an-ti-microbial: regioselective synthesis, NMR characterization, and biological evaluation. RSC Adv. 2018 Aug 20;8(52):29967–29975. https://doi.org/10.1126/science.2475911
15. Çankaya N, Bulduk İ, Çolak AM. Extraction, development and validation of HPLC-UV method for rapid and sensitive determi-nation of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci. 2019 Feb;26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003
16. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008 Jan;28(1):155–183.
https://doi.org/10.1002/med.20097
17. Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A Review on Chem-ical Structure and Clinical Usage. Infect Disord Drug Targets. 2018;18(2):105–121.
https://doi.org/10.2174/1871526517666171017114901
18. Burbaeva GSh, Androsova LV, Savushkina OK. Binding of col-chicine to tubulin in the brain structuresin normal conditions and in schizophrenia. Neurochemical Journal. 2020;37(2):183–187. (In Russian). https://doi.org/10.31857/S1027813320010069
19. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tu-bulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201.
https://doi.org/10.1158/0008-5472.CAN-10-2429
20. Lin Z-Y, Kuo C-H, Wu D-C, Chuang W-L. Anticancer effects of clinically acceptable colchicine concentrations on human gas-tric cancer cell lines. Kaohsiung J Med Sci. 2016 Feb;32(2):68–73. https://doi.org/10.1016/j.kjms.2015.12.006
21. Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyńs-ki P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943.
https://doi.org/10.1111/cbdd.13583
22. Florian S, Mitchison TJ. Anti-Microtubule Drugs. Methods Mol Biol. 2016;1413:403–421.
https://doi.org/10.1007/978-1-4939-3542-0_25
23. Matsumura E, Morita Y, Date T, Tsujibo H, Yasuda M, Ok-abe T, et al. Cytotoxicity of the hinokitiol-related compounds, gamma-thujaplicin and beta-dolabrin. Biol Pharm Bull. 2001 Mar;24(3):299–302. https://doi.org/10.1248/bpb.24.299
24. Maksimov AYu, Lukbanova EA, Sayapin YA, Gusakov EA, Gon-charova AS, Lysenko IB, et al. Anticancer activity of tropolone alkaloids in vitro and in vivo. Modern problems of science and education. 2020;(2)169. (In Russian).
25. Lee Y-S, Choi K-M, Kim W, Jeon Y-S, Lee Y-M, Hong J-T, et al. Hinokitiol inhibits cell growth through induction of S-phase ar-rest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135
26. Seo JS, Choi YH, Moon JW, Kim HS, Park S-H. Hinokitiol induc-es DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14.
https://doi.org/10.1186/s12860-017-0130-3
27. Chen S-M, Wang B-Y, Lee C-H, Lee H-T, Li J-J, Hong G-C, et al. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expres-sion and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068.
https://doi.org/10.18632/oncotarget.18648
28. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle ar-rest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419-019-1492-6
29. Morita Y, Matsumura E, Tsujibo H, Yasuda M, Okabe T, Sakag-ami Y, et al. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hondai Mak. Biol Pharm Bull. 2002 Aug;25(8):981–985.
https://doi.org/10.1248/bpb.25.981
30. Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 1999 Feb;32(1):63–73.
https://doi.org/10.1046/j.1365-2184.1999.3210063.x
31. Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle ar-rest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203.
https://doi.org/10.1371/journal.pone.0104203
32. Zhang L, Peng Y, Uray IP, Shen J, Wang L, Peng X, et al. Nat-ural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy. DNA Re-pair (Amst). 2017 Dec;60:89–101.
https://doi.org/10.1016/j.dnarep.2017.10.009
33. Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Bio-phys Res Commun. 2006 Dec 8;351(1):26–32.
https://doi.org/10.1016/j.bbrc.2006.09.166
34. Tu D-G, Yu Y, Lee C-H, Kuo Y-L, Lu Y-C, Tu C-W, et al. Hi-nokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degra-dation of epidermal growth factor receptor. Oncol Lett. 2016 Apr;11(4):2934–2940. https://doi.org/10.3892/ol.2016.4300
35. Huang C-H, Jayakumar T, Chang C-C, Fong T-H, Lu S-H, Thomas PA, et al. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules. 2015 Sep 25;20(10):17720–17734.
https://doi.org/10.3390/molecules201017720
36. Tsao Y-T, Huang Y-F, Kuo C-Y, Lin Y-C, Chiang W-C, Wang W-K, et al. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signal-ing in B16F10 Mouse Melanoma Cells. Int J Mol Sci. 2016 Feb 18;17(2):248. https://doi.org/10.3390/ijms17020248
37. Ahn J-H, Woo J-H, Rho J-R, Choi J-H. Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhu-lensis In Vitro and In Vivo. Mar Drugs. 2019 Feb 21;17(2):126. https://doi.org/10.3390/md17020126
38. Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsuk-agoshi S, et al. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J Med Chem. 1992 Jan 24;35(2):267–273.
https://doi.org/10.1021/jm00080a010
39. Ishihara M, Wakabayashi H, Motohashi N, Sakagami H. Quan-titative structure-cytotoxicity relationship of newly synthesized tropolones determined by a semiempirical molecular-orbital method (PM5). Anticancer Res. 2010 Jan;30(1):129–133.
40. Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the antiproliferative effects of tropolone deriva-tives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018
41. Li J, Falcone ER, Holstein SA, Anderson AC, Wright DL, Wiemer AJ. Novel α-substituted tropolones promote potent and selec-tive caspase-dependent leukemia cell apoptosis. Pharmacol Res. 2016 Nov;113(Pt A):438–448.
https://doi.org/10.1016/j.phrs.2016.09.020
42. Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Col-ligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. On-cotarget. 2017 Sep 29;8(44):76085–76098.
https://doi.org/10.18632/oncotarget.18543
43. Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, et al. In vitro and in vivo antimalari-al activity of puberulic acid and its new analogs, viticolins A-C, produced by Penicillium sp. FKI-4410. J Antibiot (Tokyo). 2011 Feb;64(2):183–188. https://doi.org/10.1038/ja.2010.124
44. Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Syn-thesis and cytotoxic activity of [benzo[b][1,4]oxazepino[7,6,5-de] quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2
45. Gusakov EA, Topchu IA, Mazitova AM, Dorogan IV, Bula-tov ER, Serebriiskii IG, et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new an-ti-cancer agents. RSC Adv. 2021;11(8):4555–4571.
https://doi.org/10.1039/d0ra10610k
46. Thieffry D. Dynamical roles of biological regulatory circuits. Brief Bioinform. 2007 Jul;8(4):220–225.
https://doi.org/10.1093/bib/bbm028
Количество просмотров: 679
Предыдущая статьяРеконструкция молочной железы с использованием лоскута на перфоранте глубокой нижней эпигастральной артерии (DIEP-FLAP). История развития
Следующая статьяТрудные случаи дифференциальной диагностики острого аппендицита
Прямой эфир