14 сентября, 2023. Доказано: имплантат после обработки, предложенной учеными МИСИС, лучше приживается и уничтожает бактерии

Специализации: Хирургия

Эффективность ранее предложенной учеными НИТУ МИСИС технологии покрытия титановых имплантатов для реконструктивной хирургии, подтверждена специалистами Национального исследовательского центра эпидемиологии и микробиологии имени почётного академика Н. Ф. Гамалеи. Результаты in vivo испытаний показали, что после специальной обработки улучшается взаимодействие имплантата с костной тканью, его антибактериальная и противогрибковая активность. Технология не требует дорогостоящего оборудования и может проводиться непосредственно в больницах и хирургических центрах.

Одним из оптимальных и легко масштабируемых методов модификации поверхности имплантата является плазменно-электролитическое оксидирование (ПЭО), когда титановые изделия обрабатывают в электролите под высоким напряжением.

«За счет выделения газообразного кислорода из расплава во время обработки, на металлической подложке образуется микропористое оксидное покрытие, микроструктура которого лучше адаптирована к костной ткани, чем гладкий титан. Размер, форма и распределение пор по размерам тоже оказывают существенное влияние на адгезию, распространение, пролиферацию и дифференцировку клеток. Микропоры могут также служить резервуаром для загрузки различных биологически активных веществ: факторов роста, бактерицидов и др.», - говорит автор исследования Анастасия Попова, инженер научно-учебного центра самораспространяющегося высокотемпературного синтеза (НУЦ СВС) МИСИС-ИСМАН, аспирантка кафедры порошковой металлургии и функциональных покрытий Университета МИСИС.

Для улучшения биологической активности материала в процессе ПЭО-обработки в состав электролита были добавлены функциональные элементы, такие как Cu, Na, P, Ca, Si, O.

 По словам исполнительницы исследования, магистрантки iPhD программы НИТУ МИСИС «Биоматериаловедение» Дарьи Адваховой, медь эффективно инактивирует грамположительные и грамотрицательные бактерии, предотвращая образование вредоносных биопленок.

Для ускорения образования костной ткани вокруг имплантата, ученые загрузили поверхность белком BMP-2, это наиболее изученный костный морфогенетический белок, используемый в ортопедической хирургии.

«Оценку биоактивности и биосовместимости мы проводили на модели титановых имплантатов, специально разработанных для черепа мышей. Испытания показали, что белок BMP-2 значительно ускоряет формирование новой костной ткани. Мы наблюдали выраженное ремоделирование кости, остеокондукцию и остеогенез», – сказала соавтор исследования д.б.н., профессор Анна Карягина, главный научный сотрудник лаборатории биологически активных наноструктур НИЦЭМ им. Н Ф. Гамалеи. Эксперимент подробно описан в международном научном журнале ACS Applied Materials & Interfaces (Q1).

Хотя процесс плазменно-электролитического оксидирования относительно хорошо изучен, ученые Университета МИСИС выявили интересную структурную особенность, которая ранее подробно не обсуждалась. С помощью просвечивающей электронной микроскопии удалось выяснить, что функциональные элементы распределены не по всему объему покрытия, а сосредоточены преимущественно на поверхности в виде биостекла из-за технических особенностей процесса.

 «Введённые в электролит элементы Ca, P, Na, K, Si, и O определяют биоактивность имплантата за счет ионного обмена, происходящего на границе поверхности с физиологической средой. Это открытие имеет не только фундаментальное, но и практическое значение. Биостёкла представляют собой аморфные материалы, которые могут связываться как с твердыми, так и с мягкими тканями и могут быть использованы в пористых имплантатах для стимулирования адгезии и пролиферации костных клеток. Помимо этого, они растворяются со скоростью, сравнимой со скоростью образования новой костной ткани и могут быть использованы в качестве систем доставки лекарств. Подбирая режимы формирования покрытий и состав электролита, мы можем сформировать тонкий слой биостекла с необходимым для конкретного применения составом», – говорит соавтор исследования к.т.н. Константин Купцов, старший научный сотрудник НУЦ СВС МИСИС-ИСМАН.

Исследование выполнено при поддержке Российского научного фонда (№ 20-19-00120-Π) и стратегического проекта Университета МИСИС «Биомедицинские материалы и биоинженерия» в рамках программы Минобрнауки России «Приоритет-2030» под руководством под руководством д.ф.-м.н. Дмитрия Штанского, главного научного сотрудника НУЦ СВС МИСИС-ИСМАН.

Университет науки и технологий МИСИС – ведущий вуз страны в области создания, внедрения и применения новых технологий и материалов. Опираясь на вековые традиции признанных в России и мире научных школ, современные образовательные технологии, университет ставит перед собой задачу внести максимальный вклад в развитие экономики за счет прорывных разработок и качественной подготовки специалистов. В научно-исследовательской деятельности Университет МИСИС концентрируется на таких приоритетных направлениях, как металлургия, горное дело, материаловедение, квантовые технологии, биоматериалы и биоинженерия, альтернативная энергетика, аддитивные и информационные технологии.

В вузе действует порядка 45 научно-исследовательских лабораторий и инжиниринговых центров мирового уровня, в которых работают ведущие российские и зарубежные ученые. В состав университета входит 7 институтов и 6 филиалов – четыре в России и два за рубежом. В вузе более 23 000 обучающихся, 25% студентов – граждане 86 стран. Университет МИСИС сотрудничает более чем с 1600 крупнейшими компаниями России и мира – лидерами в своих отраслях. Официальный сайт вуза – https://misis.ru/.

Новость предоставлена на безвозмездной основе.


Прямой эфир