Психиатрия Психиатрия и психофармакотерапия им. П.Б. Ганнушкина
Психиатрия Психиатрия и психофармакотерапия им. П.Б. Ганнушкина
№03 2010
Эпигенетика: 8% генома человека состоит из привнесенных вирусов №03 2010
Номера страниц в выпуске:6-7
Не так давно был фактически открыт необычный вирусный код внутри ДНК человека. Калифорнийские ученые группы Pacific Biosciences представили новую технологию расшифровки так называемой эпигенетической информации – «скрытого слоя» наследственности. Это данные, которые не определяются традиционными методиками, однако оказывают очень существенное влияние на то, как записанные в геноме инструкции будут реализованы.
Моя предыдущая статья была написана около года назад, и в ней лишь вскользь упоминается об эпигенетике, а между тем эта молодая наука уже сейчас сулит нам поистине революционные изменения в нашем представлении о природе психических заболеваний и шизофрении в частности.
Не так давно был фактически открыт необычный вирусный код внутри ДНК человека.
Калифорнийские ученые группы Pacific Biosciences представили новую технологию расшифровки так называемой эпигенетической информации – «скрытого слоя» наследственности. Это данные, которые не определяются традиционными методиками, однако оказывают очень существенное влияние на то, как записанные в геноме инструкции будут реализованы.
Небольшой экскурс в историю: наука эпигенетика начала активно развиваться в конце XX века, когда ученые пришли к пониманию того, что наследственная информация заложена не только в самой последовательности ДНК, но и в определенных модификациях отдельных кодирующих «букв алфавита» – нуклеотидов.
Так, например, простое добавление метильной группы (CH3) часто приводит к инактивации модифицированного участка ДНК. Проблема до сих пор была в отсутствии у исследователей хоть сколько-нибудь потокового метода работы с эпигеномом – модифицированные нуклеотиды искали практически «с лупой».
Эпигенетическим наследованием называют наследуемые изменения в фенотипе или экспрессии генов, вызываемые другими механизмами, чем изменение последовательности ДНК (приставка эпи- означает «в дополнение»). Такие изменения могут оставаться видимыми в течение нескольких клеточных поколений или даже нескольких поколений живых существ.
В случае эпигенетического наследования не происходит изменения последовательности ДНК, но другие генетические факторы регулируют активность генов. Лучшим примером эпигенетических изменений для эукариот является процесс дифференцировки клеток. В течение морфогенеза тотипотентные стволовые клетки становятся плюрипотентными линиями клеток, которые в тканях эмбриона затем превращаются в полностью дифференцированные клетки. Единственная клетка – зигота (оплодотворенная яйцеклетка) дифференцируется в различные типы клеток: нейроны, мышечные клетки, эпителиальные клетки, клетки кровеносных сосудов и многие другие. В процессе дифференцировки активируются одни гены и инактивируются другие.
К известным эпигенетическим механизмам, помимо прионизации белков, относятся метилирование ДНК (рис. 1), ремоделирование хроматина, регуляция на уровне РНК, в частности РНК-интерференция, инактивация X-хромосомы.
Поскольку фенотип клетки или организма в целом зависит от того, какие гены транскрибируются, наследование транскрипционного статуса генов может приводить к эпигенетическим эффектам. Есть несколько уровней регуляции экспрессии генов, первый из которых – ремоделирование хроматина – комплекса ДНК и ассоциированных белков-гистонов. Ремоделирование хроматина может инициироваться посттрансляционной модификацией аминокислот гистонов, например их метилированием и химической модификацией азотистых оснований, например метилированием цитозина.
Я вспоминаю посещение лаборатории Тимоти Кроу (T.Crow) в 1984 г. в Лондоне. Т.Кроу показал мне 2 семьи макак-мармозеток (они быстро размножаются), контрольную и основную, которой ввели спинно-мозговую жидкость от 4 больных ядерной шизофренией. Ученые-приматологи фиксировали изменения поведения у потомков обезьян с помощью специальной компьютеризированной методики. Т.Кроу пришел к выводу, что у «шизофренической» линии макак движения ограничены, их жизнь выглядит беднее, они более вялые, что позволяет предположить, что болезнь проявляется таким образом, наподобие простой формы шизофрении, и эти данные были опубликованы. В частной беседе проф. Т.Кроу обратил мое внимание на раннее поседение у потомков зараженных обезьянок, что могло бы быть объяснено, и на то, что у макак, предкам которых ввели ликвор больных шизофренией, стали... завиваться хвосты. Тогда мы посмотрели на это с очевидной самоиронией, однако в свете данных последних лет мы можем думать о метилировании ДНК.
Наследственный код у людей, а также у целого ряда других млекопитающих содержит фрагменты генетической последовательности специфичного вируса, который мог сыграть важную роль в изменчивости видов как с положительным, так и с отрицательным знаком. Об этом сообщили группа ученых из Японии и США, возглавляемых Кэидзо Томонагой (Keizo Tomonaga) из университета Осаки (Япония).
По данным последних исследований, целых 8% человеческого генома происходит не от наших предков-животных, а от вирусов. Однако до сих пор в наследственном коде людей обнаруживались вставки только от различных ретровирусов.
Теперь же Томонага и его коллеги открыли первый пример наследования (эндогенизации) у млекопитающих генетического кода от вируса, не принадлежащего данному семейству. И это оказался борнавирус (Bornavirus) – РНК-вирус, интересный тем, что его репликация происходит в ядре клетки (рис. 2).
Японские исследователи проанализировали 234 генома из тех видов, что ранее были секвенированы полностью. В результате нуклеотидные последовательности, гомологичные генам борнавируса (endogenous Borna-like nucleoprotein elements – EBLN), обнаружены в геномах человека, некоторых нечеловекообразных приматов, нескольких грызунов и слонов. Причем в ряде случаев в EBLN оказались нетронутыми открытые рамки считывания и происходила экспрессия генов с синтезом мРНК.
Интересно также, что анализ показал: добавление кода от борнавируса в код всех этих существ происходило независимо и в разные этапы эволюции. Так, у сусликов данная «обнова» в геноме появилась совсем недавно, а у приматов – 40 млн лет назад. Все это натолкнуло японских и американских генетиков на мысль о важной роли данного вируса в механизме генетической изменчивости видов.
Открытие международной группы ученых прокомментировал и развил Седрик Фешотт из Техасского университета (США). Как и в случае с ассимиляцией кода других вирусов, «новая» последовательность интегрируется в хромосомы половых клеток и далее передается от родителей к детям. И это важно, поскольку ранее борнавирус сам по себе биологи лишь связывали с неврологическим заболеванием Борны (Borna disease) и было известно, что поражает этот вирус только нейроны.
Однако получается, что подобные инфекции наших очень отдаленных предков оставили след в геноме нашего вида. Как это происходит, японцы показали на опыте, заразив борнавирусом культивированные человеческие клетки и тут же обнаружив свежие примеры формирования в геноме этих клеток новых последовательностей EBLN.
С.Фешотт рассуждает, что такие случаи заражения популяций с последующим наследованием части генома вируса могут служить источником мутаций в мозге, приводящих к самым различным (по знаку) последствиям для вида в целом (рис. 3). В частности, С.Фешотт предполагает, что имеется связь между древним «подарком» от борнавируса людям и таким заболеванием, как шизофрения. Очевидно, что на тернистом пути поисков этиологии психических заболеваний уже в ближайшем будущем следует ожидать новых открытий.
Не так давно был фактически открыт необычный вирусный код внутри ДНК человека.
Калифорнийские ученые группы Pacific Biosciences представили новую технологию расшифровки так называемой эпигенетической информации – «скрытого слоя» наследственности. Это данные, которые не определяются традиционными методиками, однако оказывают очень существенное влияние на то, как записанные в геноме инструкции будут реализованы.
Небольшой экскурс в историю: наука эпигенетика начала активно развиваться в конце XX века, когда ученые пришли к пониманию того, что наследственная информация заложена не только в самой последовательности ДНК, но и в определенных модификациях отдельных кодирующих «букв алфавита» – нуклеотидов.
Так, например, простое добавление метильной группы (CH3) часто приводит к инактивации модифицированного участка ДНК. Проблема до сих пор была в отсутствии у исследователей хоть сколько-нибудь потокового метода работы с эпигеномом – модифицированные нуклеотиды искали практически «с лупой».
Эпигенетическим наследованием называют наследуемые изменения в фенотипе или экспрессии генов, вызываемые другими механизмами, чем изменение последовательности ДНК (приставка эпи- означает «в дополнение»). Такие изменения могут оставаться видимыми в течение нескольких клеточных поколений или даже нескольких поколений живых существ.
В случае эпигенетического наследования не происходит изменения последовательности ДНК, но другие генетические факторы регулируют активность генов. Лучшим примером эпигенетических изменений для эукариот является процесс дифференцировки клеток. В течение морфогенеза тотипотентные стволовые клетки становятся плюрипотентными линиями клеток, которые в тканях эмбриона затем превращаются в полностью дифференцированные клетки. Единственная клетка – зигота (оплодотворенная яйцеклетка) дифференцируется в различные типы клеток: нейроны, мышечные клетки, эпителиальные клетки, клетки кровеносных сосудов и многие другие. В процессе дифференцировки активируются одни гены и инактивируются другие.
К известным эпигенетическим механизмам, помимо прионизации белков, относятся метилирование ДНК (рис. 1), ремоделирование хроматина, регуляция на уровне РНК, в частности РНК-интерференция, инактивация X-хромосомы.
Поскольку фенотип клетки или организма в целом зависит от того, какие гены транскрибируются, наследование транскрипционного статуса генов может приводить к эпигенетическим эффектам. Есть несколько уровней регуляции экспрессии генов, первый из которых – ремоделирование хроматина – комплекса ДНК и ассоциированных белков-гистонов. Ремоделирование хроматина может инициироваться посттрансляционной модификацией аминокислот гистонов, например их метилированием и химической модификацией азотистых оснований, например метилированием цитозина.
Я вспоминаю посещение лаборатории Тимоти Кроу (T.Crow) в 1984 г. в Лондоне. Т.Кроу показал мне 2 семьи макак-мармозеток (они быстро размножаются), контрольную и основную, которой ввели спинно-мозговую жидкость от 4 больных ядерной шизофренией. Ученые-приматологи фиксировали изменения поведения у потомков обезьян с помощью специальной компьютеризированной методики. Т.Кроу пришел к выводу, что у «шизофренической» линии макак движения ограничены, их жизнь выглядит беднее, они более вялые, что позволяет предположить, что болезнь проявляется таким образом, наподобие простой формы шизофрении, и эти данные были опубликованы. В частной беседе проф. Т.Кроу обратил мое внимание на раннее поседение у потомков зараженных обезьянок, что могло бы быть объяснено, и на то, что у макак, предкам которых ввели ликвор больных шизофренией, стали... завиваться хвосты. Тогда мы посмотрели на это с очевидной самоиронией, однако в свете данных последних лет мы можем думать о метилировании ДНК.
Наследственный код у людей, а также у целого ряда других млекопитающих содержит фрагменты генетической последовательности специфичного вируса, который мог сыграть важную роль в изменчивости видов как с положительным, так и с отрицательным знаком. Об этом сообщили группа ученых из Японии и США, возглавляемых Кэидзо Томонагой (Keizo Tomonaga) из университета Осаки (Япония).
Теперь же Томонага и его коллеги открыли первый пример наследования (эндогенизации) у млекопитающих генетического кода от вируса, не принадлежащего данному семейству. И это оказался борнавирус (Bornavirus) – РНК-вирус, интересный тем, что его репликация происходит в ядре клетки (рис. 2).
Японские исследователи проанализировали 234 генома из тех видов, что ранее были секвенированы полностью. В результате нуклеотидные последовательности, гомологичные генам борнавируса (endogenous Borna-like nucleoprotein elements – EBLN), обнаружены в геномах человека, некоторых нечеловекообразных приматов, нескольких грызунов и слонов. Причем в ряде случаев в EBLN оказались нетронутыми открытые рамки считывания и происходила экспрессия генов с синтезом мРНК.
Интересно также, что анализ показал: добавление кода от борнавируса в код всех этих существ происходило независимо и в разные этапы эволюции. Так, у сусликов данная «обнова» в геноме появилась совсем недавно, а у приматов – 40 млн лет назад. Все это натолкнуло японских и американских генетиков на мысль о важной роли данного вируса в механизме генетической изменчивости видов.
Открытие международной группы ученых прокомментировал и развил Седрик Фешотт из Техасского университета (США). Как и в случае с ассимиляцией кода других вирусов, «новая» последовательность интегрируется в хромосомы половых клеток и далее передается от родителей к детям. И это важно, поскольку ранее борнавирус сам по себе биологи лишь связывали с неврологическим заболеванием Борны (Borna disease) и было известно, что поражает этот вирус только нейроны.
Однако получается, что подобные инфекции наших очень отдаленных предков оставили след в геноме нашего вида. Как это происходит, японцы показали на опыте, заразив борнавирусом культивированные человеческие клетки и тут же обнаружив свежие примеры формирования в геноме этих клеток новых последовательностей EBLN.
С.Фешотт рассуждает, что такие случаи заражения популяций с последующим наследованием части генома вируса могут служить источником мутаций в мозге, приводящих к самым различным (по знаку) последствиям для вида в целом (рис. 3). В частности, С.Фешотт предполагает, что имеется связь между древним «подарком» от борнавируса людям и таким заболеванием, как шизофрения. Очевидно, что на тернистом пути поисков этиологии психических заболеваний уже в ближайшем будущем следует ожидать новых открытий.
Список исп. литературыСкрыть список1. Nature, 7 January 2010; 463: 84–87.
2. Nature, 7 January 2010; 463: 39–40.
3. www.pacificbiosciences.com